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1 Introduction

CST L is a simple text-based language for defining code generators and code abstractors for the
AgileUML toolset. This enables users to define and add their own code generators/abstractors to
the tool, and to modify existing code generators/abstractors. It is a scripting language executed
within AgileUML, and does not require compilation.

Section 2 describes the use of CST L for code generation, and Section 3 its use for program
abstraction. Section 4 describes how symbolic machine learning can be used to produce CST L
scripts from examples.

2 Code generators

Three generators are currently available in the cg directory:

1. For Java 8, in files cgJava8.cstl , cgmain.cstl and cginterface.cstl . The generated code uses
the OCL library Ocl .Java.

2. For Swift 5, in files cgSwift .cstl , cgswiftmain.cstl and cgprotocol .cstl . OCL library Ocl .swift .

3. For Go 15.1, in files cgGo.cstl , etc, with OCL library ocl .go.

The Java 8 rules are used for Android app generation, and the Swift 5 rules for iOS app generation
(AgileUML tool Build menu options for app generation from the current model). The Go rules
are executed via the Build menu option “Generate Go”.

Usually the simplest way to create a new code generator is to copy and adapt an existing
generator for a similar language: the Go translator was developed from the Swift generator in this
way.

It is also possible to use the antlr2cstl script to generate an outline CSTL script for an ANTLR
grammar L.g4: use the ANTLRv4 parser for ANTLR to produce an AST for L.g4 (parser rules
only) in output/ast .txt , and invoke antlr2cstl to generate an outline script in cstlFromAntlr .cstl .

The Build menu option “Use CSTL specification” applies a selected .cstl file to the current
model, to enable experimentation with alternative code generators.

Rules in CST L have the form:

Source syntax |--> Target syntax <when> Condition

The left side of the rule is some text syntax of a UML class, expression or statement, where KM3
text syntax is used for class declarations, and OCL syntax for expressions. The statement syntax
of AgileUML is used for statements. The right side of the rule is written in the syntax of the
target language. The Condition is expressed in terms of the source language syntax categories
and stereotypes.

Rules are grouped based on the source syntax category: types, expressions, etc.
As an example, some rules from UML to Java could be written as:
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Package::

package _1 { types: _2 classes: _3 usecases: _4 } |-->package _1;\n\n_2\n\n_3

Class::

abstract class _1 { _2 } |-->abstract class _1\n{\n_2\n}\n\n

class _1 extends _2 { _3 } |-->class _1 extends _2 {\n_3\n}\n\n

class _1 { _2 } |-->class _1\n{\n_2\n}\n\n

Attribute::

attribute _1 : _2; |--> _2 _1;\n

reference _1 : _2; |--> _2 _1 = new _2();\n

Type::

Set(_1) |-->HashSet<_1>

Sequence(_1) |-->ArrayList<_1>

Operation::

operation _1(_2) : _3

pre: _4 post _5 activity: _6; |--> public _3 _1(_2)\n { _6 }\n

The i for positive integer i from 1 to 99 denote variables which hold concrete syntax fragments.
They are termed ‘metavariables’. On the LHS of a rule, i represents some UML fragment, such
as a name, or the contents of a class. On the RHS i denotes the corresponding code fragment
derived by applying the mapping rules recursively. Metavariables used in the LHS of a rule should
be named left to right in increasing order 1, 2, 3 etc. A metavariable ∗ may also be used to
denote a list of 1 or more elements. A second metavariable for lists is +. ∗ should precede +
on the LHS of a rule if both are used.

Specialised rules are listed before more general rules. Given a source text element elem, in
category Cat , the first rule of ruleset Cat whose LHS matches elem is applied to elem, with
metavariables i of the LHS being bound to fragments within elem. These fragments are then
themselves mapped by the rulesets appropriate for their categories, and the result of transformation
substituted for i on the RHS of the rule. If no rule of Cat applies, the element is mapped to
itself. Thus in the above rule set, types such as int , double are mapped without change from UML
to Java. However, for Swift, the rules would be:

Type::

int |-->Int

long |-->Int64

boolean |-->Bool

double |-->Double

Sequence(_1) |-->[_1]

Set(_1) |-->Set<_1>

As an example of code generation, the following KM3 text of a UML package:

package App

{ class CDO

{ reference sectors : Set(Sector); }

abstract class Sector
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{ attribute probDefault : double;

attribute lossAmount : int;

}

class IndustrySector extends Sector

{ reference companys : Set(Company); }

class BankingSector extends Sector

{ reference banks : Set(Bank); }

class Bank

{ attribute name : String; }

class Company

{ attribute name : String; }

}

Would be converted by the above Java rules into Java code beginning:

package App;

class CDO

{

HashSet<Sector> sectors = new HashSet<Sector>();

}

abstract class Sector

{

double probDefault;

int lossAmount;

}

...

2.1 Writing CST L specifications

The following categories of rules are available for UML/OCL to 3GL code generation:

� Type rules, defining the target language equivalents of usages of UML types int , double,
long , String , boolean, enumerations, class types and collection types. These rules are listed
together, following the header Type ::.

For example:

Type::

Set(_1) |-->HashSet<_1>

Sequence(_1) |-->ArrayList<_1>

map UML collection types to Java 7+ templated types.

� Enumeration rules, defining the interpretation of enumerated type definitions and their literal
values.

� Expression rules, defining the interpretation of OCL expressions. These are divided into
categories of basic expressions, binary expressions, unary expressions, conditional expressions
and set expressions. For example:
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BasicExpression::

_1._2(_3) |-->_1._2(_3)

_1(_2) |-->_1(_2)

_1._2 |-->_1.get_2()

define rules for operation calls with and without navigation in the function, and navigation
of data features. These would map a call obj .op(x .att) into obj .op(x .getatt()).

� Package and class rules, which define how the top-level structure of a class diagram maps to
a program.

� Attribute and operation rules, defining how class data and operation features are mapped.
Attribute rules either have the format

attribute _1 : _2;

for data features of string, numeric, boolean or enumerated type, or the format

reference _1 : _2;

for data features of collection or class types. The keywords identity or static can be used for
the attribute case.

� Parameter rules for formal parameter and actual parameter (argument) lists in operation
declarations and calls.

� Statement rules, defining how the high-level activity statements of AgileUML are interpreted
as program code.

� Use case rules defining how use cases are interpreted as program code.

� Text rules, defining pattern matching and replacement based on unstructured text, eg.:

createByPK_1(_2) |-->_1.createByPK_1(_2)

These are listed with the basic expressions. Three formats are available on the LHS: text 1();
text( 1) and text 1( 2).

Rules are applied recursively in order to transform arbitrarily complex expressions, statements
and classes, each application replaces a metavariable i on the LHS with the transformed text of
whatever source text was in the i place. Thus, given some binary and unary expression rules:

UnaryExpression::

-_1 |-->-_1

+_1 |-->+_1

_1->log() |-->Math.log(_1)

_1->exp() |-->Math.exp(_1)

_1->sin() |-->Math.sin(_1)

_1->cos() |-->Math.cos(_1)

_1->tan() |-->Math.tan(_1)

_1->sqr() |-->(_1)*(_1)

_1->sqrt() |-->Math.sqrt(_1)

_1->cbrt() |-->Math.cbrt(_1)

_1->floor() |-->((int) Math.floor(_1))

_1->ceil() |-->((int) Math.ceil(_1))

_1->round() |-->((int) Math.round(_1))
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_1->size() |-->_1.size()

_1->first() |-->Ocl.first(_1)

_1->last() |-->Ocl.last(_1)

_1->tail() |-->Ocl.tail(_1)

_1->front() |-->Ocl.front(_1)

_1->reverse() |-->Ocl.reverse(_1)

_1->max() |-->Ocl.max(_1)

_1->min() |-->Ocl.min(_l)

_1->sum() |-->Ocl.sum(_1)

_1->sort() |-->Ocl.sort(_1)

not(_1) |-->!(_1)

_1->isEmpty() |-->(_1.size() == 0)

_1->notEmpty() |-->(_1.size() > 0)

_1->display() |--> System.out.println(_1 + "");

_1->asSet() |-->Ocl.asSet(_1)

_1->flatten() |-->Ocl.flatten(_1)

BinaryExpression::

_1 & _2 |-->_1 && _2

_1 or _2 |-->_1 || _2

_1 xor _2 |-->((_1 || _2) && !(_1 && _2))

_1 + _2 |-->_1 + _2

_1 - _2 |-->_1 - _2<when> _1 numeric, _2 numeric

_1 - _2 |-->Ocl.stringSubtract(_1,_2)<when> _1 String, _2 String

_1 - _2 |-->Ocl.setSubtract(_1,_2)<when> _1 Set, _2 collection

_1 - _2 |-->Ocl.sequenceSubtract(_1,_2)<when> _1 Sequence, _2 collection

_1 mod _2 |-->_1 % _2

_1 * _2 |-->_1 * _2

_1 / _2 |-->_1 / _2

x→exp()∗ x→cbrt() is rewritten to Math.exp(x )∗Math.cbrt(x ) by applying the binary expression
rule for ∗, then applying the unary expression rules for exp and cbrt to the two arguments of the
∗ expression. Rules for operators of lower precedence (such as or) should be listed before those of
higher precedence (such as +).

2.2 Rule conditions

Rules may have conditions of the form metavariable property, for example the rules for − above
distinguish between numeric subtraction and other meanings of the − symbol by inspecting the
type of elements in the metavariables. If 1 and 2 are both numeric (have int , long or double
type) then the rule

_1 - _2 |-->_1 - _2<when> _1 numeric, _2 numeric

applies, however if the metavariable elements have String type, the next rule applies:

_1 - _2 |-->Ocl.stringSubtract(_1,_2)<when> _1 String, _2 String

Conditions are evaluated prior to selection of a rule, and they test the properties of source elements
bound to variables i .

Possible condition properties for expression metavariables are:

numeric

integer

String
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Set

Sequence

collection

object

classid

value

variable

attribute

enumerationLiteral

The first 7 conditions concern the type of the expression, the last 5 concern the syntactic category
of a basic expression: classId is true for an identifier which is a class name, value is true for a
literal value, etc. integer means either long or int , whilst numeric also includes the case of double.

Conditions can be negated, eg:

_1 = _2 |-->_1 == _2<when> _1 not String, _1 not object, _1 not collection

But it is more concise to use the implicit order of rule checking to avoid using negations.
Conditions on the ∗ or + variables are:

_* any stereo

_* all stereo

These are quantifiers over the elements bound to ∗ or +: the first is true if any of these elements
satisfies predicate stero, and the second is true if every element satisfies stereo.

Possible condition properties for type rules are:

enumerated

class

Sequence

Set

Collection

Function

Map

Ref

Class means the metavariable is bound to a class type, Sequence to a sequence type, etc. The con-
dition collection can be used for reference rules, to distinguish many-valued reference declarations
from single-valued references.

A condition for an attribute is identity , meaning that it is an identity attribute (there should
normally be at most one such attribute in each class).

Stereotypes can also be used as condition properties, for classes and attributes. For example:

Attribute::

_1 : _2 |--> let _1 : _2<when>_1 readOnly

for a mapping from UML to Swift.

2.3 Metafeatures

The RHS of rules can also use metafeatures, which compute some function of the source element
held in a metavariable. The notation is i ‘f for metafeature f . Supported metafeatures are
defaultValue for Type; type, typename, elementType, upper (multiplicity), lower (multiplicity) for
expressions, attributes/references and operations; owner and ownername for attributes/references
and operations, and name for classes, types, operations, use cases, attributes and references.
defaultSubclass is the first concrete subclass of a given class. For an expression, formalName gives
the formal parameter name corresponding to an actual parameter expression.

An example rule with a metafeature is:
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for _1 : _2 do _3 |-->for (_2‘elementType _1 : _2) { _3}

In principle, this mechanism could provide access to any feature of the metamodel of UML class
diagrams. However in most cases it is possible and preferable to use the pattern-matching facilities
of rule LHS or rule condition tests.

The var ‘name notation can also be used when name.cstl is an alternative/additional CST L
file which can be used to map var . For example, the Swift code generation rule:

Class::

class _1 { _2 } |-->protocol _1 { _2‘cgprotocol }\n<when> _1 interface

maps the content of an interface using the rules of cgprotocol .cstl , instead of the cg .cstl file. This
is necessary, because Swift interface definitions are restricted in their formats. If an auxiliary file
f .cstl is invoked by i ‘f , then i and all subterms involved in computing the result for i are also
processed using f .cstl by default. The invocation relation between CST L files should be acyclic.

Another point to notice in the above example rules is the use of a library, called Ocl , which con-
tains definitions of specialised operations such as String
stringSubtract(String s1,String s2). The developer of the code generator needs to provide defi-
nitions of these operations in the target language – or reuse them from a similar language. For
example, the stringSubtract operation is already defined in Ocl .∗ libraries for Java 6, Java 7 and
other languages.

2.4 Defining new functions

The language can also be used to define new functions, via the metafeatures facility. For example,
a function to obtain all inherited and direct data features of a class could be expressed as a CST L
script called allDataFeatures.cstl :

Class::

class _1 { _2 } |-->_2

class _1 extends _2 { _3 } |-->_2‘allDataFeatures _3

abstract class _1 { _2 } |-->_2

abstract class _1 extends _2 { _3 } |-->_2‘allDataFeatures _3

class _1 implements _2 { _3 } |-->_3

class _1 extends _2 implements _3 { _4 } |-->_2‘allDataFeatures _4

abstract class _1 implements _2 { _3 } |-->_3

abstract class _1 extends _2 implements _3 { _4 } |-->_2‘allDataFeatures _4

Attribute::

identity attribute _1 : _2; |--> identity attribute _1 : _2;\n

static attribute _1 : _2; |--> static attribute _1 : _2;\n

attribute _1 : _2; |--> attribute _1 : _2;\n

reference _1 : _2; |--> reference _1 : _2;\n

Operation::

query _1(_2) : _3 pre: _4 post: _5 activity: _6 |-->

operation _1(_2) : _3 pre: _4 post: _5 activity: _6 |-->
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static query _1(_2) : _3 pre: _4 post: _5 activity: _6 |-->

static operation _1(_2) : _3 pre: _4 post: _5 activity: _6 |-->

This script invokes itself recursively on the ancestors of each class. Attributes and references of
the classes are accumulated, whilst operations are discarded. This function is useful for code
generation into languages such as Python and Go which do not have object-oriented inheritance.

2.5 Using CST L specifications

The LHS of rules for UML/OCL code generation have a fixed format and these cannot be varied.
The files cg/cgJava8.cstl and cg/cgSwift .cstl give examples of all the available rules. The RHS
and conditions of rules can be varied to generate text in many different languages.

Write your main translation rules for target language L in a file cg/cgL.cstl . The syn-
tax of this can be checked by loading it into the Agile UML tools via the File menu option
Load transformation ⇒ Load CSTL. Warning messages are given if rules cannot be parsed.
Additional CST L files in the cg directory are also loaded by this step and can be invoked within
cgL.cstl by their names.

If you have defined a class diagram model, this can be translated to code via cgL.cstl by selecting
the Build menu option Use CSTL specification. The output text is written to output/cgout .txt .

For some languages, multiple output files need to be produced from the same source model,
for example, C header and code files. Separate code generator CST L files should be written to
produce each output.

3 Program abstraction

CST L scripts can also be written to process input data of any source language in the form of
abstract syntax trees/parse trees according to the metamodel of Figure 1. We refer to this more
general form of the language as CGTL.

Figure 1: Metamodel of parse trees

In textual syntax, parse trees are written as nested LISP-style lists, eg.:

(unaryExpression ++ (primaryExpression x))

for the C expression ++x.
Such parse trees can represent program code, specifications in UML/OCL, or even syntax trees

of natural language texts.
The same structure of scripts as described in Section 2 can be used to process parse trees, with

three main differences:

� The left hand sides of rules separate successive subterms by a space, eg:
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unaryExpression::

++ _1 |--> _1 := _1 + 1

� Rulesets are named by the tag of the terms they are intended to process. This is usually
the same name as the grammar rule of the source language grammar, and should be distinct
from the UML/OCL tags such as Type, BasicExpression, etc.

� Functions local to a script can be defined as rulesets within the script, instead of as separate
script files.

� Java external functions can be invoked from scripts.

Lowercase initial letters are typically used for the names of CGTL rulesets.

3.1 Metafeatures for CGTL

The following metafeatures on terms can be used:

� i ‘first – the first subterm of the term bound to i . Also second , third , up to seventh.

� i ‘last – the last subterm of the term bound to i

� ∗ ‘first – the first term of the term list ∗ (also for +)

� ∗ ‘last – the last term of the term list ∗ (also for +)

� ∗ ‘front – the front sublist of the list of terms ∗ (or of +)

� ∗ ‘tail – the tail sublist of the list of terms ∗ (or of +). Also tail2 and tail3 for 2 and 3
applications of tail

� ∗ ‘f for ruleset f – apply f to each element of the list of terms ∗, concatenating the strings
that result (or of +)

� ∗ ‘recurse – apply the script to (r terms) where r is the ruleset containing this expression,
and terms are the terms in the list bound to ∗.

3.2 Dynamic term information

The features map in Figure 1 provides a means to record information from one part of an AST
for use elsewhere in processing the AST. Typically, type information is stored during processing
variable declarations, which can then be used in processing expressions and statements involving
the variables. For example, x + y in Python has different semantic representations depending on
the types of x , y . The features map associates the literal string form of an AST term with a list
of stereotypes and meta-attributes or tag=value pairs. For example we could have the mapping

“x” 7→ [“int”, “defined = true”]

for an integer variable x , to assert that it has the type int and has been explicitly defined. Such
information can be queried by rule conditions and modified by rule actions.

3.3 CGTL rule conditions

The condition test

<when> _i tag

returns true if i is bound to a term with tag tag , or if the literal form of i has stereotype tag ,
otherwise false. Condition tests can also check the apparent type of a term:
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<when> _i T

for T being character , integer , real , boolean, String , Sequence, Set , Map, Function and custom
types represented as stereotypes. Metafeatures, matching, negation and quantifier conditions can
also be used, as described in Table 1. Note that conditions are generally evaluated on the input
terms before they are processed by CSTL/CGTL. Processing by a term by a ruleset f needs to be
explicitly indicated by i ‘f .

Condition Meaning Example
i t The i term has tag t 1 recordType

i P The literal form of term i has type/stereotype P 1 String

∗ all t All terms in ∗ have tag t
∗ any t Some term in ∗ has tag t + any picOccurs

i matches re Literal form of i matches regular expression re 1 matches .capitalize()

i ‘f P i term literal form has tagged value f = P or 2‘isObjectPointer true

ruleset f applied to i term evaluates to/has
stereotype P 1‘ocltype int

Table 1: Condition tests in CGTL

Properties P can be literal values, metavariables, or i ‘f for metavariable i and tagged value
or ruleset name f . If f is a ruleset name, i ‘f is the result of applying that ruleset to the term
bound to i , otherwise i ‘f is the tagged value of the literal form a of the term bound to i . That
is, if

features[a] = vect

it is the value v associated with f in an element “f=v” of vect .
It is recommended to use disjoint sets of names for tagged value meta-attributes, stereotypes,

and ruleset names. Rulesets cannot be dynamically modified at runtime. Only tagged values and
stereotypes and global variables can be dynamically modified.

3.4 CGTL rule actions

In place of/in addition to a <when> clause, an <action> clause can be defined:

<action> _i T

This records a stereotype for the translation of i which can then be tested by subsequent <when>
clauses. Variables i in the action refer to the translation of i . Table 2 summarises the different
forms of CGTL action.

Action Meaning Example
i P Set translation of term i to have type/stereotype P 1 String

$ P Set value of global variable $ to P $ 1

∗ all t Set all evaluated terms in ∗ to have property P
e / x Replace x by e in the RHS result of rule 0 / x

i ‘f P Set f tagged value of i translation f = P 2‘isObjectPointer true

Table 2: Action forms in CGTL

An example of the use of actions is the following script:

Typ::

_1 |-->_1

Decln::
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var _1 : Sequence ( _2 ) |--> _2[] _1;\n<action> _1 Sequence

var _1 : _2 |--> _2 _1;\n<action> _1 _2

Stat::

print _1 |--> displaySequence(_1);\n<when> _1 Sequence

print _1 |--> displayint(_1);\n<when> _1 int

print _1 |--> displaydouble(_1);\n<when> _1 double

print _1 |--> display(_1);\n

Prog::

_* |-->_*

If a declaration var x : int is encountered, then the type stereotype int is recorded for x , so
that a subsequent statement print x is translated to displayint(x ); .

Rule actions are a powerful facility for expressing complex processing, however they also make
scripts more difficult to understand and modify. Where possible their use should be avoided.

3.5 CGTL examples

Examples of abstraction transformations are in Java2UML.cstl, JS2UML.cstl, VB2UML.cstl,
python2UML.cstl, pascal2UML.cstl, cobol2UML.cstl and C2UML.cstl, together with their asso-
ciated auxiliary scripts. These take as input parse trees in output/ast .txt produced by ANTLR
parsers for Java, JavaScript, VisualBasic6, Python, pascal, Cobol85 and C, respectively. They are
executed via the File menu options “From Java AST”, “From JavaScript AST”, “From Python
AST”, “From Pascal AST”, “From VB6 AST”, “From COBOL AST” and “From C AST”.

The Build menu option “Apply CSTL to AST” loads a selected .cstl file from the cg subdirec-
tory, and applies this to output/ast .txt .

To write an abstraction script for a new programming language, use a structure similar to
the VB2UML.cstl, pascal2UML.cstl or python2UML.cstl abstractors, with rulesets specific to the
grammar of the new language. As described above, the antlr2cstl script can also be used to
generate an outline CGTL script for a language.

A CGTL script script .cstl can be applied to an ast file by the command line command:

cgtl cg/script.cstl output/ast.txt

4 Machine learning of CST L scripts

Automated construction of code generation scripts from text examples is also supported, in
prototype form. The training data consists of files typeExamples.txt , expressionExamples.txt ,
statementExamples.txt and declarationExamples.txt in the output directory, with the format

UML/OCL text Target language text

with one line for each example, and the source and target text separated by one or more tabs.
E.g, in typeExamples.txt :

Sequence(String) ArrayList<String>

Map(String,Person) HashMap<String,Person>

for translation to Java. Two or more different examples for each specific rule are required.
The target program language grammar and grammar rules should be specified in a file configuration.txt .

Eg., for C:

parser = C

typeRule = typeSpecifier

expressionRule = expression
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statementRule = statement

featureRule = externalDeclaration

classRule = externalDeclaration

localVariableRule = blockItem

enumerationRule = externalDeclaration

The ANTLR parser for the specified target language needs to be available, and is invoked to
process each target text example of the appropriate kind, and the output (as parse trees) is then
used for symbolic machine learning of tree-to-tree mappings from the corresponding parse trees of
the UML/OCL source texts [4]. Run CGBE from the AgileUML Synthesis menu to produce a code
generator script output/tl .cstl from the text training data. This option can also be executed by
the command

cgbeTrain configuration.txt

The grammar categories of UML/OCL are provided as a metamodel output/mmCGBE . This is
used by the above options, as is the outline mapping of grammar categories output/forwardCGBE .tl .

To validate a learned CSTL file, run:

cgbeValidate output/tl.cstl output/asts.txt

where asts.txt are a series of UML/OCL ASTs, one per line.
To learn a general language-to-language mapping, use the option LTBE from the AgileUML

Synthesis menu. “LTBE from ASTs” learns a tree-to-tree mapping of corresponding source lan-
guage ASTs (in textual format in file output/sourceasts.txt) and target language ASTs (in file
output/targetasts.txt), one example per line of each file. “LTBE from text” uses a series of text
example files formatted with lines

SourceText TargetText

with the source and target separated by one or more tabs. ANTLR parsers for source and target
languages are needed.

5 Further information

Publications using CST L include [5, 3, 1, 6, 2].
The latest version of AgileUML is at https://github.com/eclipse/agileuml, code generator and

abstraction scripts are in cg.zip and supporting libraries in libraries.zip either on GitHub or at
https://agilemde.co.uk. cgbe.zip contains source files to perform code generator synthesis from
examples.
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