
Course overview: Introduction to programming
concepts

• What is a program?

• The Python programming language

• First steps in programming

• Program statements and data

• Designing programs

• Python and the web.

This course will give an introduction to general programming

concepts, and to the Python programming language.

1

Textbook and web

• We recommend a basic Python textbook such as “Python in

easy steps” (Mike McGrath)

• Python can be downloaded for free from

http : //python.org/downloads

• In this course the computers already have Python installed.

2

What is a program?

• A program is a set of instructions which control a computer

(laptop, desktop, tablet, etc)

• Programs can be written for huge variety of tasks: performing

complex computations; financial trading; computer graphics

and games; medical diagnosis and data processing; aircraft

autopilot, etc

• Programs can read data from computer keyboard, mouse

movements and actions, from data files, databases and any

other sensors/data sources on the computer – and from

internet if connected.

• Programs can present information graphically on computer

screen, can write to text files, or update any other device

connected to computer – if permitted to do so.

3

What is a program?

A set of instructions, in a particular order.

Example of simple program (expressed in English, not a

programming language):

read a number X

read a number Y

calculate Z = (X + Y) divided by 2

display Z

This computes average of two numbers, eg: for X = 203, Y = 1965,

displays 1084.

4

What is a program?

• Another name for programs is software – as opposed to

hardware, the physical computer and devices.

• Programs are written in text files in the format of some

programming language

• The most widely-used programming languages are C, C++,

C#, Java and Python.

• We’ll use Python, as it’s simplest of the popular languages.

• Python is intended to be simple language for learning

programming – but can be used for real applications also.

5

The Python programming language

• We write Python programs in text files (eg., using WordPad or

Notepad), with .py file extension, eg.: Program1.py

X = 203

Y = 1965

Z = (X + Y)//2

print("The answer is: " + str(Z))

Here, three integer-valued variables X, Y, Z are declared. X and Y

are given values 203 and 1965, then Z is calculated from them, and

then displayed.

Python statements are written on successive text lines in text file

Program1.py . // is used to divide integers. str(Z) converts number

Z to a string.

6

Running Program1.py

7

First steps in programming

• Open the Windows console (Start; All Programs; Accessories;

Command Prompt)

• In the Windows console, cd to the directory cllexamples where

Program1.py is (on memory stick)

• Run the program with python:

python Program1.py

Note that python is lowercase P here.

8

Data in computer

9

First steps in programming

• A Python program in a file Name.py can have any number of

statements, written on successive lines.

• Give programs meaningful names: Average.py would be better

name for our first program.

• Program statements: individual instructions and steps the

computer should take.

Eg.: X = 203 “Introduce an integer variable called X, and

assign the value 203 to it”.

Z = (X + Y)//2 “Introduce an integer variable called Z, and

assign (X + Y) divided by 2 to it”.

Try changing the values assigned to X, Y and re-run using python.

10

First steps in programming

• Of course, a more useful program is one that can read inputs

from user:

xvalue = input("Enter 1st integer value: ")

X = int(xvalue)

yvalue = input("Enter 2nd integer value: ")

Y = int(yvalue)

Z = (X + Y)//2

print("The answer is: " + str(Z))

The dialogs prompt user for the X, Y values.

Input from user is stored in String variables xvalue, yvalue – these

store pieces of text.

Then converted to numbers by int(value). Eg., string “334” is

converted to number 334.

11

Average.py input dialog

12

First steps in programming

• If we enter some wrong data (not integers), our program

crashes – a professional program should be robust & continue

despite errors

• The User Interface of a program consists of the visual

components used to exchange data between program and users

– in this case the input dialog and command window. Also

called Graphical User Interface (GUI).

13

Program Statements

• Programs consist of program statements – individual processing

instructions, operating on variables and values

• Assignment statements assign a value to a variable:

X = 530

These also declare/introduce the variable, so that it can be

used in following statements:

X = 530

Y = X*X

• Conditional statements enable decisions to be made: if a

condition is true, one behaviour is executed; if condition is false

another behaviour is executed.

14

Max.py:

xvalue = input("Enter 1st integer value: ")

X = int(xvalue)

yvalue = input("Enter 2nd integer value: ")

Y = int(yvalue)

Z = 0

if X < Y :

Z = Y

else :

Z = X

print("The largest value is: " + str(Z))

15

The statement

if X < Y :

Z = Y

else :

Z = X

tests the condition X < Y, (‘is X less than Y?’), if this is true then

the statement Z = Y is executed, otherwise (if X equals Y or is

larger than Y), the statement Z = X is executed.

Effect is to always set Z to be the larger of X and Y.

Indent sub-statements such as Z = X at least 2 spaces from their

parent statement (here, the if-else statement).

16

Multiple decisions

Conditions can be as complex as needed, and multiple conditions

can be tested (StudentMarks.py):

markvalue = input("Enter the student’s mark: ")

mark = int(markvalue)

if mark < 40 :

result = "Fail"

else :

if mark >= 40 and mark < 50 :

result = "Pass -- grade D"

else :

if mark >= 50 and mark < 60 :

result = "Pass -- grade C"

else :

if mark >= 60 and mark < 70 :

result = "Pass -- grade B"

17

else :

result = "Pass -- grade A"

print("The student’s result is: " + result)

For each nested statement, indent a further 2 (or more) spaces.

The “and” keyword combines two conditions by conjunction.

result is a String variable – it stores a piece of text.

18

Conditional Statements

Examples of different cases:

Input Output

10 “Fail”

42 “Pass – grade D”

55 “Pass – grade C”

67 “Pass – grade B”

70 “Pass – grade A”

Try executing StudentMarks.py with other example input values.

19

Loop Statements

• Loop statements repeat some instructions over & over again

until a task is completed

• for statements loop for a fixed number of times:

for i in range(a,b+1) :

statements

means ‘execute the statements with i = a, then with i = a+1, i

= a+2, ..., then with i = b’

• If a > b, does nothing

• If a equals b, just one iteration, for i = a.

20

Loop Statements

SumNumbers.py:

nvalue = input("Enter the number to sum: ")

n = int(nvalue)

sum = 0

for i in range(1,n+1) :

sum = sum + i

print("The sum is: " + str(sum))

calculates sum of numbers from 1 to n.

Results for different input values:

21

n sum

0 0

1 1

2 3

3 6

4 10

5 15

6 21

7 28

8 36

9 45

10 55

22

• Simple program structure as list of statements

• Variables of integer type (X = 0) – these can store values of

integers, eg.: -214, 0, 1, 55, 1000, 500000, etc.

• Variables of String type (s = "") – these can store

strings/text, eg.: “Result”, “Enter a value”

• Assignment statements var = value

• Conditional statements

if Condition :

statement1

else :

statement2

• Bounded loops:

for var in range(a, b) :

statement

23

More advanced Python

• float variables (rational numbers)

• Unbounded loops (while statements)

• What is programming?

• Functions and recursion

• List variables.

24

Calculations with rational numbers

• float variables can store fractional values: 0.5, 2.25, 0.0001,

etc.

• Python provides functions for square root: math.sqrt(d), x to

power y, etc: math.pow(x,y)

• These functions return float values in general – but integers can

be used as floats (1.0, -3.0, etc).

Example: calculate total amount earned if invest deposit (eg, £100)

for n years at interest rate rate (eg. 5%, or 0.05).

25

Calculating compound interest

deposit grows with interest to: total = deposit ∗ (1 + rate)n after n

years at rate rate.

import math

The math library is needed for pow

amount = 100.0 # total money

deposit = 100.0 # original investment

rate = 0.05 # interest rate

for year in range(1,11) :

amount = deposit * math.pow(1.0 + rate, year)

print("After " + str(year) +

" years, total is: " + str(amount))

Notice that comments are written following the # character.

26

Amounts after n years:

n amount

1 105.0

2 110.25

3 115.763

4 121.551

5 127.628

6 134.01

7 140.71

8 147.746

9 155.133

10 162.889

27

Calculating compound interest

How many years does it take for investment to double?

Need while loop:

import math

amount = 100.0 # total money

deposit = 100.0 # original investment

rate = 0.05 # interest rate

year = 1

while amount < 2*deposit :

amount = deposit * math.pow(1.0 + rate, year)

print("After " + str(year) + " years, total is: " +

str(amount))

year = year + 1

28

while E:

C

repeats C until E is false – but may run forever!

Here, termination when year = 15.

Try changing the rate and see the effect on the result.

29

What is Programming?

• Given: a problem (“find how many years it takes to double an

investment at 5% interest”)

• First: idea for solution

• Second: plan an algorithm to carry out the solution

• Third: code up algorithm in a programming language (Python

or another)

• Fourth: test/correct your code.

30

What is Programming?

• Problem to “find number of years until investment doubles”

• Idea for solution: calculate total amount earned for successive

years, stopping when this amount is at least twice the original

deposit

• Algorithm: compute total earned to year by

amount = deposit ∗ (1.0 + rate)year

for year = 1, 2, 3, ... stopping when amount ≥ 2 ∗ deposit

• Code in Python: use while loop to repeat calculation until the

stopping condition is true

• Test with different rates and deposits.

31

Reading data from files

• Programs can read data from files (usually, text files)

• Eg.: to read student marks and classify these into grades

• Idea is that program reads lines of text from file (should be

numbers), and converts each to a grade, until end of file (eof) is

reached.

32

MarksFile.py:

file = open("marks.txt", "r")

for line in file :

mark = int(line)

if mark < 40 :

result = "Fail"

else :

if mark >= 40 and mark < 50 :

result = "Pass -- grade D"

else :

if mark >= 50 and mark < 60 :

result = "Pass -- grade C"

else :

if mark >= 60 and mark < 70 :

result = "Pass -- grade B"

else :

result = "Pass -- grade A"

33

print("The student’s result is: " + result)

file.close()

The file marks.txt is opened for reading, and for each line of the file,

its grade is calculated and displayed. Finally marks.txt is closed.

34

Defining functions

• So far we’ve written all code in one file as sequence of

statements.

• Also possible to write several operations in a program, called

from main code: factorial example.

• For larger programs, best to create separate files + call their

code from main file.

35

Calculating factorials

For integer n > 0, its factorial is product: n ∗ (n − 1) ∗ ... ∗ 1.

Factorial.py:

def fact(n) :

if n <= 1 :

return 1

else :

return n*fact(n-1)

Main program uses fact function:

for n in range(1,14) :

print("Factorial " + str(n) + "! = " + str(fact(n)))

36

fact calls itself – this is recursion. Provides another way of looping:

fact(5) calls fact(4), which calls fact(3), etc. return e ends the

call and returns value of e to the caller.

37

Program design: lottery example

• Problem to “Carry out lottery with three numbers in range 1

to 30 for user to guess with five guesses”

• Idea for solution: generate random numbers, ask user to guess

these, and count correct guesses

• Algorithm:

Generate 3 random integers in 1..30

Ask user for 5 guesses

Count and display the correct guesses

• Code in Python: use random package and

sample(range(1, 31), 3) to generate the random numbers

• Test with different cases of correct/incorrect guesses.

38

Lottery.py:

import random # to generate random numbers

balls = random.sample(range(1,31),3)

correct = 0

for i in range(1,6) :

sguess = input("Enter your guess: ")

guess = int(sguess)

if guess in balls :

print("Correct guess of a ball")

correct = correct + 1

else :

print("Sorry, wrong guess!")

print("You guessed " + str(correct) + " correct");

39

List variables

balls is a list variable, holds collection of values. Membership test

guess in balls

checks if value of guess is a member of balls.

• Previously, we saw variables that store single items – an

individual integer, rational, string, or class instance

• Sometimes useful to have one variable storing group of items –

such as the 3 balls in lottery game

• List variables store group of items of same kind. Eg.:

balls = [23,11,17]

declares balls as a list of 3 integers.

• Individual items are written as balls[0], balls[1], balls[2].

40

Data in list variables

41

List variables

A loop of form

for x in array :

... code for x ...

is often used to process lists.

Size of list array is len(array). Notice that numbering of elements

starts from 0, so ends at len(array)− 1.

Set value of array [i] by statement

array[i] = value

42

Summary

• Program structure as list of statements

• Variables of integer, rational, string, class instance types

• List variables

• Assignment, conditional, loop statements

• Functions and recursion.

43

Python and the web

• Python can be used to create web applications – software that

can be executed via a Web browser

• Python programs can read data you enter in a Web page (eg.,

in a form)

• Results of program can be displayed in browser.

44

Python and the web

Server-side Python code to generate a Web page (as text):

print(’Content-type:text/html\r\n\r\n’)

print(’<!DOCTYPE HTML>’)

print(’<html lang="en">’)

print(’<head>’)

print(’<title>Output page from Python</title>’)

print(’</head>’)

print(’<body>’)

print(’<h1>Output from Python</h1>’)

print(’</body>’)

print(’</html>’)

Returns a simple web page to any browser that connects to server.

45

Result of simple Python script

46

Python and the web

• Programs can read form information sent over internet

• Data accessed using the form field names

• Arbitrary processing can be carried out by server script

• Results returned in Web result page.

47

Form that submits to Python

<html> <head>

<title>Calculate cube</title>

</head>

<body>

<form name = "form1" action = "cube.py">

Enter integer to be cubed:

<input name = "field1" type = "text">

<p><input type = "submit"

value = "Submit"></p>

</form>

</body></html>

48

Cube form

49

Python code of cube.py :

import cgi

data = cgi.FieldStorage()

x = data.getvalue(’field1’)

y = int(x)

print(’Content-type:text/html\r\n\r\n’)

print(’<!DOCTYPE HTML>’)

print(’<html lang="en">’)

print(’<head>’)

print(’<title>Python cube calculator</title>’)

print(’</head>’)

print(’<body>’)

print(’<h1>’ + x + ’ cubed = ’ + str(y*y*y) + ’</h1>’)

print(’</body>’)

print(’</html>’)

Can submit different x by pressing Back in brower.

50

Cube result page

51

Python and the web

Other form elements can be used with Python:

• Checkboxes:

<input type="checkbox" name="agree"

value="agreed-terms-conditions">

Test with

if data.getvalue(’agree’):

activate()

• Radio buttons:

Agree? <input type="radio" name="agree"

value="agreed-terms">

Disagree? <input type="radio" name="agree"

value="not-agreed">

Test with

52

answer = data.getvalue(’agree’)

if answer == ’agreed-terms’:

...

else:

...

53

Python and the web

For selection lists:

<select name="options">

<option value="value1">Value1</option>

<option value="value2">Value2</option>

<option value="value3">Value3</option>

</select>

Test with

opt = data.getvalue(’options’)

opt will have value value1, value2 or value3, depending on which

option was selected in the form.

54

Form with selection list

55

Further resources

We hope you have enjoyed this course. The following are useful for

further study:

• Python can be downloaded from:

http://python.org/downloads

Choose the option appropriate for your computer and

operating systems.

• The examples used in this course are at:

www.nms.kcl.ac.uk/kevin.lano/cllpython

56

