
Course overview: Introduction to programming
concepts

• What is a program?

• The Python programming language

• First steps in programming

• Program statements and data

• Designing programs

• Python and the web.

This course will give an introduction to general programming

concepts, and to the Python programming language.
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Textbook and web

• We recommend a basic Python textbook such as “Python in

easy steps” (Mike McGrath)

• Python can be downloaded for free from

http : //python.org/downloads

• In this course the computers already have Python installed.
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What is a program?

• A program is a set of instructions which control a computer

(laptop, desktop, tablet, etc)

• Programs can be written for huge variety of tasks: performing

complex computations; financial trading; computer graphics

and games; medical diagnosis and data processing; aircraft

autopilot, etc

• Programs can read data from computer keyboard, mouse

movements and actions, from data files, databases and any

other sensors/data sources on the computer – and from

internet if connected.

• Programs can present information graphically on computer

screen, can write to text files, or update any other device

connected to computer – if permitted to do so.
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What is a program?

A set of instructions, in a particular order.

Example of simple program (expressed in English, not a

programming language):

read a number X

read a number Y

calculate Z = (X + Y) divided by 2

display Z

This computes average of two numbers, eg: for X = 203, Y = 1965,

displays 1084.
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What is a program?

• Another name for programs is software – as opposed to

hardware, the physical computer and devices.

• Programs are written in text files in the format of some

programming language

• The most widely-used programming languages are C, C++,

C#, Java and Python.

• We’ll use Python, as it’s simplest of the popular languages.

• Python is intended to be simple language for learning

programming – but can be used for real applications also.
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The Python programming language

• We write Python programs in text files (eg., using WordPad or

Notepad), with .py file extension, eg.: Program1.py

X = 203

Y = 1965

Z = (X + Y)//2

print("The answer is: " + str(Z))

Here, three integer-valued variables X, Y, Z are declared. X and Y

are given values 203 and 1965, then Z is calculated from them, and

then displayed.

Python statements are written on successive text lines in text file

Program1.py . // is used to divide integers. str(Z) converts number

Z to a string.
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Running Program1.py

7



First steps in programming

• Open the Windows console (Start; All Programs; Accessories;

Command Prompt)

• In the Windows console, cd to the directory cllexamples where

Program1.py is (on memory stick)

• Run the program with python:

python Program1.py

Note that python is lowercase P here.
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Data in computer
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First steps in programming

• A Python program in a file Name.py can have any number of

statements, written on successive lines.

• Give programs meaningful names: Average.py would be better

name for our first program.

• Program statements: individual instructions and steps the

computer should take.

Eg.: X = 203 “Introduce an integer variable called X, and

assign the value 203 to it”.

Z = (X + Y)//2 “Introduce an integer variable called Z, and

assign (X + Y) divided by 2 to it”.

Try changing the values assigned to X, Y and re-run using python.
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First steps in programming

• Of course, a more useful program is one that can read inputs

from user:

xvalue = input("Enter 1st integer value: ")

X = int(xvalue)

yvalue = input("Enter 2nd integer value: ")

Y = int(yvalue)

Z = (X + Y)//2

print("The answer is: " + str(Z))

The dialogs prompt user for the X, Y values.

Input from user is stored in String variables xvalue, yvalue – these

store pieces of text.

Then converted to numbers by int(value). Eg., string “334” is

converted to number 334.
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Average.py input dialog
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First steps in programming

• If we enter some wrong data (not integers), our program

crashes – a professional program should be robust & continue

despite errors

• The User Interface of a program consists of the visual

components used to exchange data between program and users

– in this case the input dialog and command window. Also

called Graphical User Interface (GUI).
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Program Statements

• Programs consist of program statements – individual processing

instructions, operating on variables and values

• Assignment statements assign a value to a variable:

X = 530

These also declare/introduce the variable, so that it can be

used in following statements:

X = 530

Y = X*X

• Conditional statements enable decisions to be made: if a

condition is true, one behaviour is executed; if condition is false

another behaviour is executed.
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Max.py:

xvalue = input("Enter 1st integer value: ")

X = int(xvalue)

yvalue = input("Enter 2nd integer value: ")

Y = int(yvalue)

Z = 0

if X < Y :

Z = Y

else :

Z = X

print("The largest value is: " + str(Z))
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The statement

if X < Y :

Z = Y

else :

Z = X

tests the condition X < Y, (‘is X less than Y?’), if this is true then

the statement Z = Y is executed, otherwise (if X equals Y or is

larger than Y), the statement Z = X is executed.

Effect is to always set Z to be the larger of X and Y.

Indent sub-statements such as Z = X at least 2 spaces from their

parent statement (here, the if-else statement).
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Multiple decisions

Conditions can be as complex as needed, and multiple conditions

can be tested (StudentMarks.py):

markvalue = input("Enter the student’s mark: ")

mark = int(markvalue)

if mark < 40 :

result = "Fail"

else :

if mark >= 40 and mark < 50 :

result = "Pass -- grade D"

else :

if mark >= 50 and mark < 60 :

result = "Pass -- grade C"

else :

if mark >= 60 and mark < 70 :

result = "Pass -- grade B"
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else :

result = "Pass -- grade A"

print("The student’s result is: " + result)

For each nested statement, indent a further 2 (or more) spaces.

The “and” keyword combines two conditions by conjunction.

result is a String variable – it stores a piece of text.

18



Conditional Statements

Examples of different cases:

Input Output

10 “Fail”

42 “Pass – grade D”

55 “Pass – grade C”

67 “Pass – grade B”

70 “Pass – grade A”

Try executing StudentMarks.py with other example input values.
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Loop Statements

• Loop statements repeat some instructions over & over again

until a task is completed

• for statements loop for a fixed number of times:

for i in range(a,b+1) :

statements

means ‘execute the statements with i = a, then with i = a+1, i

= a+2, ..., then with i = b’

• If a > b, does nothing

• If a equals b, just one iteration, for i = a.
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Loop Statements

SumNumbers.py:

nvalue = input("Enter the number to sum: ")

n = int(nvalue)

sum = 0

for i in range(1,n+1) :

sum = sum + i

print("The sum is: " + str(sum))

calculates sum of numbers from 1 to n.

Results for different input values:
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n sum

0 0

1 1

2 3

3 6

4 10

5 15

6 21

7 28

8 36

9 45

10 55
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• Simple program structure as list of statements

• Variables of integer type (X = 0) – these can store values of

integers, eg.: -214, 0, 1, 55, 1000, 500000, etc.

• Variables of String type (s = "") – these can store

strings/text, eg.: “Result”, “Enter a value”

• Assignment statements var = value

• Conditional statements

if Condition :

statement1

else :

statement2

• Bounded loops:

for var in range(a, b) :

statement

23



More advanced Python

• float variables (rational numbers)

• Unbounded loops (while statements)

• What is programming?

• Functions and recursion

• List variables.
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Calculations with rational numbers

• float variables can store fractional values: 0.5, 2.25, 0.0001,

etc.

• Python provides functions for square root: math.sqrt(d), x to

power y, etc: math.pow(x,y)

• These functions return float values in general – but integers can

be used as floats (1.0, -3.0, etc).

Example: calculate total amount earned if invest deposit (eg, £100)

for n years at interest rate rate (eg. 5%, or 0.05).
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Calculating compound interest

deposit grows with interest to: total = deposit ∗ (1 + rate)n after n

years at rate rate.

import math

# The math library is needed for pow

amount = 100.0 # total money

deposit = 100.0 # original investment

rate = 0.05 # interest rate

for year in range(1,11) :

amount = deposit * math.pow(1.0 + rate, year)

print("After " + str(year) +

" years, total is: " + str(amount))

Notice that comments are written following the # character.
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Amounts after n years:

n amount

1 105.0

2 110.25

3 115.763

4 121.551

5 127.628

6 134.01

7 140.71

8 147.746

9 155.133

10 162.889
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Calculating compound interest

How many years does it take for investment to double?

Need while loop:

import math

amount = 100.0 # total money

deposit = 100.0 # original investment

rate = 0.05 # interest rate

year = 1

while amount < 2*deposit :

amount = deposit * math.pow(1.0 + rate, year)

print("After " + str(year) + " years, total is: " +

str(amount))

year = year + 1
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while E:

C

repeats C until E is false – but may run forever!

Here, termination when year = 15.

Try changing the rate and see the effect on the result.

29



What is Programming?

• Given: a problem (“find how many years it takes to double an

investment at 5% interest”)

• First: idea for solution

• Second: plan an algorithm to carry out the solution

• Third: code up algorithm in a programming language (Python

or another)

• Fourth: test/correct your code.
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What is Programming?

• Problem to “find number of years until investment doubles”

• Idea for solution: calculate total amount earned for successive

years, stopping when this amount is at least twice the original

deposit

• Algorithm: compute total earned to year by

amount = deposit ∗ (1.0 + rate)year

for year = 1, 2, 3, ... stopping when amount ≥ 2 ∗ deposit

• Code in Python: use while loop to repeat calculation until the

stopping condition is true

• Test with different rates and deposits.
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Reading data from files

• Programs can read data from files (usually, text files)

• Eg.: to read student marks and classify these into grades

• Idea is that program reads lines of text from file (should be

numbers), and converts each to a grade, until end of file (eof) is

reached.
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MarksFile.py:

file = open("marks.txt", "r")

for line in file :

mark = int(line)

if mark < 40 :

result = "Fail"

else :

if mark >= 40 and mark < 50 :

result = "Pass -- grade D"

else :

if mark >= 50 and mark < 60 :

result = "Pass -- grade C"

else :

if mark >= 60 and mark < 70 :

result = "Pass -- grade B"

else :

result = "Pass -- grade A"
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print("The student’s result is: " + result)

file.close()

The file marks.txt is opened for reading, and for each line of the file,

its grade is calculated and displayed. Finally marks.txt is closed.
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Defining functions

• So far we’ve written all code in one file as sequence of

statements.

• Also possible to write several operations in a program, called

from main code: factorial example.

• For larger programs, best to create separate files + call their

code from main file.
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Calculating factorials

For integer n > 0, its factorial is product: n ∗ (n − 1) ∗ ... ∗ 1.

Factorial.py:

def fact(n) :

if n <= 1 :

return 1

else :

return n*fact(n-1)

# Main program uses fact function:

for n in range(1,14) :

print("Factorial " + str(n) + "! = " + str(fact(n)))

36



fact calls itself – this is recursion. Provides another way of looping:

fact(5) calls fact(4), which calls fact(3), etc. return e ends the

call and returns value of e to the caller.
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Program design: lottery example

• Problem to “Carry out lottery with three numbers in range 1

to 30 for user to guess with five guesses”

• Idea for solution: generate random numbers, ask user to guess

these, and count correct guesses

• Algorithm:

Generate 3 random integers in 1..30

Ask user for 5 guesses

Count and display the correct guesses

• Code in Python: use random package and

sample(range(1, 31), 3) to generate the random numbers

• Test with different cases of correct/incorrect guesses.
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Lottery.py:

import random # to generate random numbers

balls = random.sample(range(1,31),3)

correct = 0

for i in range(1,6) :

sguess = input("Enter your guess: ")

guess = int(sguess)

if guess in balls :

print("Correct guess of a ball")

correct = correct + 1

else :

print("Sorry, wrong guess!")

print("You guessed " + str(correct) + " correct");

39



List variables

balls is a list variable, holds collection of values. Membership test

guess in balls

checks if value of guess is a member of balls.

• Previously, we saw variables that store single items – an

individual integer, rational, string, or class instance

• Sometimes useful to have one variable storing group of items –

such as the 3 balls in lottery game

• List variables store group of items of same kind. Eg.:

balls = [23,11,17]

declares balls as a list of 3 integers.

• Individual items are written as balls[0], balls[1], balls[2].
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Data in list variables
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List variables

A loop of form

for x in array :

... code for x ...

is often used to process lists.

Size of list array is len(array). Notice that numbering of elements

starts from 0, so ends at len(array)− 1.

Set value of array [i ] by statement

array[i] = value
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Summary

• Program structure as list of statements

• Variables of integer, rational, string, class instance types

• List variables

• Assignment, conditional, loop statements

• Functions and recursion.
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Python and the web

• Python can be used to create web applications – software that

can be executed via a Web browser

• Python programs can read data you enter in a Web page (eg.,

in a form)

• Results of program can be displayed in browser.
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Python and the web

Server-side Python code to generate a Web page (as text):

print(’Content-type:text/html\r\n\r\n’)

print(’<!DOCTYPE HTML>’)

print(’<html lang="en">’)

print(’<head>’)

print(’<title>Output page from Python</title>’)

print(’</head>’)

print(’<body>’)

print(’<h1>Output from Python</h1>’)

print(’</body>’)

print(’</html>’)

Returns a simple web page to any browser that connects to server.
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Result of simple Python script
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Python and the web

• Programs can read form information sent over internet

• Data accessed using the form field names

• Arbitrary processing can be carried out by server script

• Results returned in Web result page.
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Form that submits to Python

<html> <head>

<title>Calculate cube</title>

</head>

<body>

<form name = "form1" action = "cube.py">

<strong>Enter integer to be cubed:</strong>

<input name = "field1" type = "text"><br>

<p><input type = "submit"

value = "Submit"></p>

</form>

</body></html>
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Cube form
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Python code of cube.py :

import cgi

data = cgi.FieldStorage()

x = data.getvalue(’field1’)

y = int(x)

print(’Content-type:text/html\r\n\r\n’)

print(’<!DOCTYPE HTML>’)

print(’<html lang="en">’)

print(’<head>’)

print(’<title>Python cube calculator</title>’)

print(’</head>’)

print(’<body>’)

print(’<h1>’ + x + ’ cubed = ’ + str(y*y*y) + ’</h1>’)

print(’</body>’)

print(’</html>’)

Can submit different x by pressing Back in brower.
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Cube result page
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Python and the web

Other form elements can be used with Python:

• Checkboxes:

<input type="checkbox" name="agree"

value="agreed-terms-conditions">

Test with

if data.getvalue(’agree’):

activate()

• Radio buttons:

Agree? <input type="radio" name="agree"

value="agreed-terms">

Disagree? <input type="radio" name="agree"

value="not-agreed">

Test with
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answer = data.getvalue(’agree’)

if answer == ’agreed-terms’:

...

else:

...
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Python and the web

For selection lists:

<select name="options">

<option value="value1">Value1</option>

<option value="value2">Value2</option>

<option value="value3">Value3</option>

</select>

Test with

opt = data.getvalue(’options’)

opt will have value value1, value2 or value3, depending on which

option was selected in the form.
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Form with selection list
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Further resources

We hope you have enjoyed this course. The following are useful for

further study:

• Python can be downloaded from:

http://python.org/downloads

Choose the option appropriate for your computer and

operating systems.

• The examples used in this course are at:

www.nms.kcl.ac.uk/kevin.lano/cllpython
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