Course overview: Introduction to programming
concepts

What is a program?
The Python programming language
First steps in programming
Program statements and data

e Designing programs

e Python and the web.

This course will give an introduction to general programming

concepts, and to the Python programming language.

Textbook and web

e We recommend a basic Python textbook such as “Python in
easy steps” (Mike McGrath)

e Python can be downloaded for free from

http : //python.org/downloads

e In this course the computers already have Python installed.

What is a program?

e A program is a set of instructions which control a computer
(laptop, desktop, tablet, etc)

e Programs can be written for huge variety of tasks: performing
complex computations; financial trading; computer graphics
and games; medical diagnosis and data processing; aircraft

autopilot, etc

Programs can read data from computer keyboard, mouse
movements and actions, from data files, databases and any

other sensors/data sources on the computer — and from

internet if connected.

Programs can present information graphically on computer
screen, can write to text files, or update any other device
connected to computer — if permitted to do so.

What is a program?
A set of instructions, in a particular order.

Example of simple program (expressed in English, not a

programming language):

read a number X

read a number Y

calculate Z = (X + Y) divided by 2
display Z

This computes average of two numbers, eg: for X = 203, Y = 1965,
displays 1084.

What is a program?

Another name for programs is software — as opposed to

hardware, the physical computer and devices.

Programs are written in text files in the format of some

programming language

The most widely-used programming languages are C, C++,
C+#, Java and Python.

We’ll use Python, as it’s simplest of the popular languages.

Python is intended to be simple language for learning

programming — but can be used for real applications also.

The Python programming language

e We write Python programs in text files (eg., using WordPad or
Notepad), with .py file extension, eg.: Programl.py

203
1965
X +Y)//2

print ("The answer is: " + str(2))

Here, three integer-valued variables X, Y, Z are declared. X and Y
are given values 203 and 1965, then Z is calculated from them, and
then displayed.

Python statements are written on successive text lines in text file

Program1.py. // is used to divide integers. str(Z) converts number
Z, to a string.

B8 Command Prompt

IC:\Users\ﬂlga\ﬂucuments\pythunexamples}
C:slUzerss\0lgasDocumentsspythonexamples >
C:slUzerss0lgasDocumentsspythonexamples >
GC:slUserss\0lgasDocumentsspythonexamples >
C:sUserss0lgasDocumentsspythonexamples >
C:slUszerss0lgasDocumentsspythonexamples >
C:slUserss0lgasDocumentsspythonexamples >
GC:sUserss0lgasDocumentsspythonexamples >
C:sUserss0lgasDocumentsspythonexamples >
C:slUzerss0lgasDocumentsspythonexamples >
C:sUserss\0lgasDocumentsspythonexamples >
GC:sUserss0lgasDocumentsspythonexamples >
C:\Uszers“0lga“Documents“pythonexamples >

ssUzerss0lgasDocumentsspythonexamples >

sUserss0lgasDocumentsspythonexamples >

U*erﬂHﬂlga\Ducumentﬂkpythunexample*}

Users“0lgasDocumentsspythonexamples >

H rsn0lgasDocumentsspythonexamples >

BT

)

':I

i

K

]

Ex
et

rsn0lgasDocumentsspythonexamples >
rss0lgasDocumentsspythonexamples >
E:\Uaerfhﬂlgakﬂncuments\pythunexamples}pythnn Programl .py
The answer is: 16884

I IxI]

A
A
A
N
A

l:-':l

C:sUserss0lgasDocumentsspythonexamples >

Running Programl.py

T

First steps in programming

e Open the Windows console (Start; All Programs; Accessories;

Command Prompt)

e In the Windows console, cd to the directory cllexamples where

Program1.py is (on memory stick)

e Run the program with python:
python Programl.py

Note that python is lowercase P here.

X
\add, then divide

sum by 2

Data in computer

First steps in programming

e A Python program in a file Name.py can have any number of

statements, written on successive lines.

Give programs meaningful names: Average.py would be better

name for our first program.

Program statements: individual instructions and steps the

computer should take.

Eg.: X = 203 “Introduce an integer variable called X, and
assign the value 203 to it”.

Z = (X +Y)//2 “Introduce an integer variable called Z, and
assign (X 4+ Y) divided by 2 to it”.

Try changing the values assigned to X, Y and re-run using python.

First steps in programming

e Of course, a more useful program is one that can read inputs

from user:

xvalue = input("Enter 1st integer value: ")

X = int(xvalue)

yvalue = input("Enter 2nd integer value: ")
= int(yvalue)

Z=(X+Y)//2

print ("The answer is: " + str(Z))

The dialogs prompt user for the X, Y values.

Input from user is stored in String variables xvalue, yvalue — these

store pieces of text.

Then converted to numbers by int(value). Eg., string “334” is

converted to number 334.

o BN S ===

GC:slUserss0lgasDocumentsspythonexamples > -
C:slUserss0lgasDocumentsspythonexamples >
C:slUserss0lgasDocumentsspythonexamples >
C:sUserss0lgasDocumentsspythonexamples >
C:slUserss0lgasDocumentsspythonexamples >
C:slUserss0lgasDocumentsspythonexamples >
sUserss0lgasDocumentsspythonexamples >
sUserss0lgasDocumentsspythonexamples >
SUserss0lgasDocumentsspythonexamples >
SUserss0lgasDocumentsspythonexamples >
SUserss0lgasDocumentsspythonexanples
SUserss0lgasDocumentsspythonexamples >
sUserss0lgasDocumentsspythonexamples >
~
~
~
~
e

Userss0lgasDocumentsspythonexamples >
Userss0lgasDocumentsspythonexamples >

s\0lgasDocumentsspythonexanples >
Userss0lgasDocumentsspythonexamples >python Programl.py
answer is: 1084

h

C:slserss0lgasDocumentsspythonexamples >python Average.py
Enter 1st integer value: 334

Enter 2nd integer value: 667

The answer iz: 560

1

GC:slserss0lgasDocumentsspythonexamples >

Average.py input dialog

12

First steps in programming

e If we enter some wrong data (not integers), our program

crashes — a professional program should be robust & continue

despite errors

The User Interface of a program consists of the visual
components used to exchange data between program and users

— in this case the input dialog and command window. Also
called Graphical User Interface (GUI).

Program Statements

e Programs consist of program statements — individual processing

instructions, operating on variables and values

Assignment statements assign a value to a variable:

X = 530

These also declare/introduce the variable, so that it can be

used in following statements:

X = 530
Y = X*X

Conditional statements enable decisions to be made: if a
condition is true, one behaviour is executed; if condition is false

another behaviour is executed.

Max.py:

xvalue = input("Enter 1st integer value: ")

X = int(xvalue)

yvalue = input("Enter 2nd integer value: ")
= int(yvalue)

Z =0

if X <Y :

else
Z =X
print ("The largest value is: " + str(Z2))

The statement

if X <Y :

tests the condition X < Y, (‘is X less than Y?’), if this is true then

the statement Z = Y is executed, otherwise (if X equals Y or is

larger than Y), the statement Z = X is executed.
Effect is to always set Z to be the larger of X and Y.

Indent sub-statements such as Z = X at least 2 spaces from their

parent statement (here, the if-else statement).

Multiple decisions

Conditions can be as complex as needed, and multiple conditions
can be tested (StudentMarks.py):

markvalue = input("Enter the student’s mark: ")
mark = int(markvalue)
if mark < 40
result = "Fail"
else
if mark >= 40 and mark < 50
result = "Pass -- grade D"
else
if mark >= 50 and mark < 60
result = "Pass -- grade C"
else
if mark >= 60 and mark < 70

result = "Pass -- grade B"

else :
result = "Pass -- grade A"

print ("The student’s result is: " + result)

For each nested statement, indent a further 2 (or more) spaces.

The “and” keyword combines two conditions by conjunction.

result is a String variable — it stores a piece of text.

Conditional Statements

Examples of different cases:

Input | Output

10 “Fail”

42 “Pass — grade D”
55 “Pass — grade C”
67 “Pass — grade B”
70 “Pass — grade A”

Try executing StudentMarks.py with other example input values.

Loop Statements

e Loop statements repeat some instructions over & over again
until a task is completed

e for statements loop for a fixed number of times:

for i in range(a,b+1)

statements

means ‘execute the statements with i = a, then with 1 = a+1, i
= a+2, ..., then withi = b’

e If a > b, does nothing

e If a equals b, just one iteration, for : = a.

Loop Statements
SumNumbers.py:

nvalue = input("Enter the number to sum: ")
int (nvalue)

sum = O

for i in range(1,n+1)

sum = sum + 1

print("The sum is: " + str(sum))

calculates sum of numbers from 1 to n.

Results for different input values:

(@I o) oo O
- AN ™

el
<

™
N

S - a4 N F 0 © - oo O

Simple program structure as list of statements

Variables of integer type (X = 0) — these can store values of
integers, eg.: -214, 0, 1, 55, 1000, 500000, etc.

Variables of String type (s = "") — these can store

strings/text, eg.: “Result”, “Enter a value”
Assignment statements var = value

Conditional statements

if Condition :
statementl
else :

statement?2

Bounded loops:

for var in range(a, b)

statement

More advanced Python

float variables (rational numbers)

Unbounded loops (while statements)

What is programming?
Functions and recursion

List variables.

Calculations with rational numbers

e float variables can store fractional values: 0.5, 2.25, 0.0001,

etc.

e Python provides functions for square root: math.sqrt(d), x to

power y, etc: math.pow(x,y)

e These functions return float values in general — but integers can
be used as floats (1.0, -3.0, etc).

Example: calculate total amount earned if invest deposit (eg, £100)

for n years at interest rate rate (eg. 5%, or 0.05).

Calculating compound interest

deposit grows with interest to: total = deposit x (1 + rate)™ after n

years at rate rate.

import math
The math library is needed for pow

amount = 100.0 # total money
deposit = 100.0 # original investment

rate = 0.05 # interest rate

for year in range(1,11)
amount = deposit * math.pow(1.0 + rate, year)
print("After " + str(year) +
" years, total is: " + str(amount))

Notice that comments are written following the # character.

Amounts after n years:

amount
105.0
110.25
115.763
121.551
127.628
134.01
140.71
147.746
155.133
162.889

n
1
2
3
4
D
6
7
8
9

—_
-

Calculating compound interest

How many years does it take for investment to double?

Need while loop:

import math

amount = 100.0 # total money
deposit = 100.0 # original investment

rate = 0.05 # interest rate

year = 1
while amount < 2*deposit
amount = deposit * math.pow(1.0 + rate, year)
print ("After " + str(year) + " years, total is: " +
str (amount))

year = year + 1

while E:
C

repeats C' until F is false — but may run forever!

Here, termination when year = 15.

Try changing the rate and see the effect on the result.

What is Programming?

e Given: a problem (“find how many years it takes to double an

investment at 5% interest”)
First: idea for solution
Second: plan an algorithm to carry out the solution

Third: code up algorithm in a programming language (Python

or another)

Fourth: test/correct your code.

What is Programming?

Problem to “find number of years until investment doubles”

Idea for solution: calculate total amount earned for successive
years, stopping when this amount is at least twice the original

deposit

Algorithm: compute total earned to year by

year

amount = deposit x (1.0 + rate)

for year = 1, 2, 3, ... stopping when amount > 2 x deposit

Code in Python: use while loop to repeat calculation until the

stopping condition is true

Test with different rates and deposits.

Reading data from files
e Programs can read data from files (usually, text files)
e Eg.: to read student marks and classify these into grades

e Idea is that program reads lines of text from file (should be

numbers), and converts each to a grade, until end of file (eof) is

reached.

MarksFile.py:

file = open("marks.txt", "r")
for line in file
mark = int(line)
if mark < 40 :
result = "Fail"
else
if mark >= 40 and mark < 50 :
result = "Pass -- grade D"
else :
if mark >= 50 and mark < 60 :
result = "Pass -- grade C"
else
if mark >= 60 and mark < 70 :
result = "Pass -- grade B"
else

result = "Pass -- grade A"

print ("The student’s result is: " + result)
file.close()

The file marks.txt is opened for reading, and for each line of the file,

its grade is calculated and displayed. Finally marks.txt is closed.

Defining functions

e So far we’ve written all code in one file as sequence of

statements.

e Also possible to write several operations in a program, called

from main code: factorial example.

e For larger programs, best to create separate files 4+ call their

code from main file.

Calculating factorials

For integer n > 0, its factorial is product: n* (n — 1) * ... % 1.

Factorial.py:

def fact(n)
if n <=1
return 1
else

return n*xfact(n-1)

Main program uses fact function:

for n in range(1,14)

print ("Factorial " + str(n) + "! = " + str(fact(n)))

fact calls itself — this is recursion. Provides another way of looping:
fact(5) calls fact(4), which calls fact(3), etc. return e ends the

call and returns value of e to the caller.

Program design: lottery example

Problem to “Carry out lottery with three numbers in range 1
to 30 for user to guess with five guesses”

Idea for solution: generate random numbers, ask user to guess

these, and count correct guesses

Algorithm:

Generate 3 random integers in 1..30
Ask user for 5 guesses

Count and display the correct guesses

Code in Python: use random package and

sample(range(1,31),3) to generate the random numbers

Test with different cases of correct/incorrect guesses.

Lottery.py:

import random # to generate random numbers

balls = random.sample(range(1,31),3)
correct = 0
for i in range(1,6)
sguess = input("Enter your guess: ")
guess = int(sguess)
if guess 1in balls
print ("Correct guess of a ball")
correct = correct + 1

else

print ("Sorry, wrong guess!")

print ("You guessed " + str(correct) + " correct");

List variables

balls is a list variable, holds collection of values. Membership test
guess in balls
checks if value of guess is a member of balls.

e Previously, we saw variables that store single items — an

individual integer, rational, string, or class instance

e Sometimes useful to have one variable storing group of items —
such as the 3 balls in lottery game

e List variables store group of items of same kind. Eg.:
balls = [23,11,17]

declares balls as a list of 3 integers.

e Individual items are written as balls|0], balls|1], balls|2].

arrayX =[]

arrayX.append(10)

arrayX.append(20)
arrayX.append(30)
arrayX.append(40)
arrayX.append(50)

or.
arrayX = [10,20,30,40,50]

Data in list variables

List variables

A loop of form

for x in array :

. code for x ...

is often used to process lists.

Size of list array is len(array). Notice that numbering of elements

starts from 0, so ends at len(array) — 1.

Set value of array|i] by statement

array[i] = value

Summoary
e Program structure as list of statements
e Variables of integer, rational, string, class instance types

List variables

Assignment, conditional, loop statements

Functions and recursion.

Python and the web

e Python can be used to create web applications — software that
can be executed via a Web browser

e Python programs can read data you enter in a Web page (eg.,

in a form)

e Results of program can be displayed in browser.

Python and the web

Server-side Python code to generate a Web page (as text):

print (’Content-type:text/html\r\n\r\n’)

print (’<!DOCTYPE HTML>’)

print (’<html lang="en">’)

print (’<head>’)

print (’<title>0Output page from Python</title>’)
print (’</head>’)

print (’<body>’)

print (’<h1>0utput from Python</h1>’)

print (’</body>’)

print (’</html>’)

Returns a simple web page to any browser that connects to server.

' :I_ 1 python response

= — @)) @ localhost/response.py

A message produced by Python

Result of simple Python script

Python and the web
e Programs can read form information sent over internet

e Data accessed using the form field names

e Arbitrary processing can be carried out by server script

e Results returned in Web result page.

Form that submits to Python

<html> <head>
<title>Calculate cube</title>
</head>

<body>

<form name = "forml" action = "cube.py">

Enter integer to be cubed:

<input name = "fieldl" type = "text'">

<p><input type = "submit"

value = "Submit"></p>

</form>

</body></html>

Calculate cube X
- _

Ay ﬁ'l' (D file:/f/C:fU sers/Olg

Enter integer to be cubed: |

| Submit |

Cube form

Python code of cube.py:

import cgi

data = cgi.FieldStorage()

x = data.getvalue(’fieldl’)

y = int(x)

print (’Content-type:text/html\r\n\r\n’)
print (’<!DOCTYPE HTML>’)

print (’<html lang="en">’)

print (’<head>’)

print (’<title>Python cube calculator</title>’)

print (’</head>’)

print (’<body>’)

print(’<h1>’ + x + ’ cubed = ’ + str(y*y*xy) + ’</h1>’)
print (’</body>’)

print (’</html>’)

Can submit different x by pressing Back in brower.

X

Cube result page

Python and the web

Other form elements can be used with Python:

e Checkboxes:

<input type="checkbox" name="agree"

value="agreed-terms—-conditions">

Test with

if data.getvalue(’agree’):

activate()

e Radio buttons:

Agree” <input type='"radio" name='"agree"
value="agreed-terms">
Disagree? <input type='"radio" name="agree"

value="not-agreed">

Test with

answer = data.getvalue(’agree’)

if answer == ’agreed-terms’:

else:

Python and the web

For selection lists:

<select name="options">

<option value="valuel">Valuel</option>
<option value="value2">Value2</option>
<option value="value3">Value3</option>
</select>

Test with

opt = data.getvalue(’options’)

opt will have value valuel, value2 or value3, depending on which

option was selected in the form.

A Options form

C | ® filey

IHEME1|ri

Value2
Value3

Form with selection list

Further resources

We hope you have enjoyed this course. The following are useful for

further study:

e Python can be downloaded from:

http://python.org/downloads

Choose the option appropriate for your computer and

operating systems.

e The examples used in this course are at:

www.nms.kcl.ac.uk/kevin.lano/cllpython

