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1 Introduction

The AgileUML toolset provides techniques for deducing matchings of classes
and features between metamodels. These matchings can be used to derive model
transformations in UML-RSDS, ATL, ETL, QVT-O and QVT-R.

The latest version of the tools can be obtained from: https://www.agilemde.co.uk
or from https://projects.eclipse.org/projects/modeling.agileuml.

2 Metamodel matching

Metamodels should be loaded using the File menu option Recent (this loads the
file output/mm.txt) or Load metamodel . Classes in the metamodel(s) should be
marked as source, ie., with this stereotype, if they are in the source metamodel
of the matching, and as target if they are in the target metamodel. Unmarked
classes are assumed to be shared (in both metamodels and mapped to them-
selves). It is convenient to use the Import facility to separate source and target
metamodels into separate files, eg:

Import:

classmm.txt

Import:

relationalmm.txt

in mm.txt.
Figure 1 shows the visual representations of the metamodels of the ATL

Class2Relational transformation case from the ATL zoo (www.eclipse.org/atl/atlTransformations).
The source metamodel MM1 is Class, on the LHS, the target metamodel MM2

is Relational , on the RHS.
In KM3 text format the source metamodel is written as:

package Class {
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Figure 1: Class and Relational metamodels

abstract class NamedElt {

attribute name : String;

}

abstract class Classifier extends NamedElt {

}

class DataType extends Classifier {

}

class Class extends Classifier {

reference super[*] : Class;

reference attr[*] ordered container : Attribute oppositeOf owner;

attribute isAbstract : boolean;

}

class Attribute extends NamedElt {

attribute multiValued : boolean;

reference type : Classifier;

reference owner : Class oppositeOf attr;

}

}

The target metamodel is:
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package Relational {

abstract class Named {

attribute name : String;

}

class Table extends Named {

reference col[*] ordered container : Column oppositeOf owner;

reference key[*] : Column oppositeOf keyOf;

}

class Column extends Named {

reference owner : Table oppositeOf col;

reference keyOf[0-1] : Table oppositeOf key;

reference type : Type;

}

class Type extends Named {

}

}

Once both metamodels are loaded, select the option Synthesise transformation
from the Synthesis menu. This provides several options for matching strategies
(Table 1). A matching comprises a relation cm between the classes of the two
metamodels, and a relation fm between the features.

Measure Definition

Data structure Classes possess similar data in their owned,
similarity (DSS) inherited or composed features [3]
Graph structural Class neighbourhoods in the 2 metamodels
similarity (GSS) have similar graph structure metrics [9]
Graph edit Class reachability graphs in the 2 metamodels
similarity (GES) have low graph edit distance [2]
Name syntactic Classes have names
similarity (NSS) with low string edit distances [8]
Name semantic Class names are synonymous terms
similarity (NMS) or in the same/linked term

families according to a thesaurus [4]
Semantic context Classes play similar semantic roles
similarity (SCS) in the 2 metamodels [10].

Table 1: Syntactic and semantic similarity measures for classes

For DSS either a general matching can be used, or matchings can be re-
stricted to be inheritance preserving: a subclass D of source class C is only
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permitted to map to a class C 1 which C maps to, or to a subclass/descendant
of such a C 1.

For small examples such as the class/relational mapping, the NMS or DSS
options are suitable. NMS uses a thesaurus (in output/thesaurus.txt) to match
classes, and it is more appropriate if there are some linguistic similarities be-
tween the metamodels (such as NamedElt and Named , or Class and Table). If
the metamodels have quite different terminologies then DSS is more suitable.

The tool will prompt you for the maximum navigation path to be considered
on the source and target side. This means the maximum length of feature chains
such as super .isAbstract or key .type (both of length 2). For cases where there
is a close structural similarity between the metamodels, such as the Ant/Maven
case, the choice of length 1 for source and target is usually adequate.

The results of the matching are shown in the console (Figure 2) and written
to output/forward .tl for the forward mapping, and output/reverse.tl for the
reverse mapping.

For example, the initial forward matchings derived by NMS with maximum
source and target navigation length 1 look as follows:

NamedElt 7−→ Named
name 7−→ name

Class 7−→ Table
name 7−→ name
attr 7−→ col

Attribute 7−→ Column
name 7−→ name
owner 7−→ owner
type 7−→ type

Classifier 7−→ Type
name 7−→ name

DataType 7−→ Type
name 7−→ name

However, this matching is incomplete on both target and source sides (isAbstract ,
multiValued and super are unused source features, key and keyOf are unused
target features). In addition, there is a potential inconsistency in that Class is
mapped to Table, but Table is not a specialisation of (or equal to) the image
Type of Classifier , even though Class is a specialisation of Classifier .

An interactive process following the matching derivation is used to identify
such flaws and to suggest possible resolutions.

Table 2 summarises the different checks which we use.
For the case of feature mapping incompleteness in Class2Relational, because

the unused source feature super is a self-association on Class, the system pro-
poses to replace attr 7−→ col by the mapping

Set{self }→closure(
super)→unionAll(attr) 7−→ col
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Issue Correction

Class mapping Retarget Sub
Sub 7−→ T mapping, or add
for Sub subclass of E , target splitting map
has T not subclass/or Sub 7−→ F
equal to F , where
E 7−→ F
Two directions of Modify one
bidirectional association r feature mapping
not mapped to mutually to ensure
reverse target features consistency
Source, target features Propose modified
have different mappings
multiplicities

Unused target subclasses Introduce
F1 of F , where condition F1C
E 7−→ F and mapping

{F1C}E 7−→ F1
Unused source Suggest class or
or target feature mapping
feature f that uses f
Feature mapping Propose concrete
f 7−→ r .g subclass RSub of
with r : R of abstract R for instantiation
type/element type of r .

Table 2: Consistency and completeness checks
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Figure 2: Initial metamodel matching

of all defined attributes of a class to the columns of a table, ie., all attributes
of the class itself and of all its ancestors are mapped to columns of the table
corresponding to the class (Figure 2).

Because of the inheritance conflict in the targets of the class mappings, the
additional class mapping

Class 7−→ Type
name 7−→ name

is also proposed: this is a ‘vertical class splitting’ of Class: each Class instance
in a source model is represented by both a Type instance and a Table instance
in the resulting Relational model1.

In the final stage of metamodel matching, the details of the matching and any
correspondence patterns identified are listed in the console (Figure 3). Warnings
are given in cases (such as multiplicity or type narrowing of target features
relative to the source) where semantic problems may arise in mapping source
models to target models.

The matchings can also be checked against specific source and target mod-
els, to identify detailed corrections in feature mappings. This is the option
“Check model wrt TL” on the File menu. The models should be stored in a file
output/out .txt . Load the metamodels and the T L transformation (this loads
forward.tl), then run the check model option. This checks for numeric functional

1The target classes must have no common MM2 ancestor which is a type/element type of
some g ∈ ran(fm)
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Figure 3: Metamodel matching with correspondence patterns
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relationships between numeric features (linear, quadratic and exponential rela-
tions), string transformations such as case changes and prefixing/suffixing, and
collection transformations such as front/tail/reverse. Eg., the Class 7−→ Table
matching could have example model data:

c1 : Class

c1.name = "Person"

c2 : Class

c2.name = "Family"

t1 : Table

t1.name = "PersonTable"

t2 : Table

t2.name = "FamilyTable"

This violates the feature matching name 7−→ name, but agrees with a matching

name + “Table” 7−→ name

and this is proposed.

3 Generating transformation specifications

Together with the metamodel matchings, the tool produces files forward .txt and
reverse.txt , which contain transformation specifications for the two directions
of the matching, in QVT-R, QVT-O, UML-RSDS, ATL and ETL.

While T L class matchings translate in general to rules in the MT languages,
sometimes multiple class matchings must be combined in a single rule (in ATL),
or one class matching is split into several rules (in QVT-R). In ATL and ETL,
composite target features in mappings f 7−→ g .h must be implemented using
additional lazy/called rules. In QVT-R, QVT-O and ETL rule inheritance is
used to remove redundant mappings (in cases where the same feature mappings
occur for a class and its superclass).

For example, the synthesised QVT-R of the above case is:

transformation tau(source: MM1, target: MM2)

{

abstract top relation NamedElt2Named

{ checkonly domain source namedelt$x : NamedElt {};

enforce domain target named$x : Named {};

}

abstract top relation Classifier2Type overrides NamedElt2Named

{ checkonly domain source classifier$x : Classifier {};

enforce domain target type$x : Type {};

}

top relation DataType2Type overrides Classifier2Type
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{ checkonly domain source datatype$x : DataType {};

enforce domain target type$x : Type {};

}

top relation Class2Table overrides Classifier2Type

{ checkonly domain source class$x : Class {};

enforce domain target table$x : Table {};

}

top relation Attribute2Column overrides NamedElt2Named

{ checkonly domain source attribute$x : Attribute {};

enforce domain target column$x : Column {};

}

top relation Class2Type overrides Classifier2Type

{ checkonly domain source classx : Class {};

enforce domain target typex : Type {};

}

top relation MapDataType2Type

{ checkonly domain source

datatype$x : DataType { name = datatype$x_name$value };

enforce domain target

type$x : Type { name = datatype$x_name$value, typeFlag = "DataType" };

when {

DataType2Type(datatype$x,type$x) }

}

top relation MapClass2Table

{ domain source var$0 : Attribute {};

checkonly domain source

class$x : Class { name = class$x_name$value }

{ Set{class$x}->closure(super)->unionAll(attr)->includes(var$0) };

enforce domain target

table$x : Table { col = table$x_col$x : Column { },

name = class$x_name$value };

when {

Class2Table(class$x,table$x) and

Attribute2Column(var$0,table$x_col$x) }

}

top relation MapAttribute2Column

{

checkonly domain source

attribute$x : Attribute { name = attribute$x_name$value,

owner = attribute$x_owner$x : Class { },
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type = attribute$x_type$x : Classifier { } };

enforce domain target

column$x : Column { name = attribute$x_name$value,

owner = column$x_owner$x : Table { },

type = column$x_type$x : Type { } };

when {

Attribute2Column(attribute$x,column$x) and

Class2Table(attribute$x_owner$x,column$x_owner$x) and

Classifier2Type(attribute$x_type$x,column$x_type$x) }

}

top relation MapClass2Type

{ checkonly domain source

classx : Class { name = classx_name$value };

enforce domain target

typex : Type { name = classx_name$value };

when {

Class2Type(classx,typex) }

}

}

An alternative mapping, aimed at generating bidirectional (bx) transfor-
mations is provided by the “Map TL to bx” option on the File menu. This
generates QVT-R and UML-RSDS.

3.1 Generation of ETL

ETL is a widely-used hybrid transformation language within a general MDE and
MT framework, Epsilon [5]. However it lacks a formal semantics, and published
ETL specifications seem to have a high frequency of flaws or code ‘smells’ [1,
6], in particular due to the use of implicit rule invocation (the equivalent()
operator).

Examining ETL cases, we find that the powerful hybrid nature of the lan-
guage sometimes leads specifiers to (i) overuse imperative coding; (ii) use com-
plex ad-hoc navigations in the target model to link target elements; (iii) overuse
implicit invocation.

An automated synthesis procedure for ETL could help to reduce such prob-
lems by (i) using declarative constructs where possible; (ii) using standard
strategies for navigating the target model; (iii) always using the version of
equivalent parameterised by an explicitly-named rule to be invoked.

For each T L rule {Cond} E 7−→ F , with E a concrete class, we generate an
ETL concrete rule of the schematic form

rule E2F

transform ex : MM1!E

to fx : MM2!F {

10



guard: ( ex.Cond )

...

}

A rule for abstract E is instead defined as an abstract ETL rule:

@abstract

rule E2F

transform ex : MM1!E

to fx : MM2!F {

guard: ( ex.Cond )

...

}

When these ETL rules are used to convert the data of an E -typed MM1

feature r to data of an F -typed MM2 feature rr , the conversion of data is
referred to as r .equivalent(′E2F ′). Because of the construction process of the
T L specification τ by metamodel matching, distinct rules of τ always either
have distinct source classes or (for class-splitting cases) distinct target classes.
Hence there can only be one ETL rule with the given name.

ETL supports rule inheritance, this can be used in cases where both a general
rule {Cond} E 7−→ F and a specialised rule {Cond1} ESub 7−→ F1 are present
in the T L specification τ , with ESub a subclass of E and F1 equal to F or a
descendant of F . The specialised rule is implemented as:

rule ESub2F1

transform esubx : MM1!ESub

to f1x : MM2!F1

extends E2F {

guard: ( esubx.Cond1 )

...

}

Feature mappings which are common to the generalised and specialised rules
do not need to be explicitly implemented in ESub2F1. If Cond1 is the same as
Cond , the guard of ESub2F1 can be omitted.

A feature mapping f 7−→ g of class mapping {Cond} E 7−→ F is represented
by an ETL assignment fx .g = ex .f ; in cases where f and g are of value types
and are not composed. Source compositions r .f are evaluated as ex .r .f . If f
and g are of class types, then f 7−→ g is implemented by

fx.g = ex.f.equivalent(’ERef2FRef’);

where f and g are not composed, and ERef is the class type of f , and FRef the
class type of g2. Likewise for composed source features r .f of class type:

fx.g = ex.r.f.equivalent(’ERef2FRef’);

2If there is no class mapping ERef 7−→ FRef then the most specific mapping with source
class equal to or an ancestor of ERef and target equal to or a descendant of FRef is quoted.
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If f or r .f is of 0..1 multiplicity, the assignments are guarded:

if (ex.f.isDefined())

{ fx.g = ex.f.equivalent(’ERef2FRef’); }

and

if (ex.r.f.isDefined())

{ fx.g = ex.r.f.equivalent(’ERef2FRef’); }

In the case of a feature mapping f 7−→ r .g , where r is of 1-multiplicity or
0..1 multiplicity, of concrete class type R, a new variable rx of type MM 2!R is
defined:

rule E2F

transform ex : MM1!E

to fx : MM2!F {

guard: ( ex.Cond )

if (ex.f.isDefined())

{ var rx = new MM2!R;

fx.r = rx;

rx.g = ex.f.equivalent(’ERef2G’);

...

}

}

The conditional test is included if f is of 0..1 multiplicity. Assignments to rx
features implement the feature mapping f 7−→ g , and other mappings k 7−→ l ,
for each k 7−→ r .l which is a feature mapping of the E 7−→ F mapping.

If there is a direct mapping f 7−→ r and also composed mappings g 7−→ r .h,
assignments are needed for the composed mappings:

rule E2F

transform ex : MM1!E

to fx : MM2!F {

guard: ( ex.Cond )

fx.r = ex.f.equivalent(’ERef2R’);

fx.r.h = ex.g.equivalent(’G2H’);

}

where r is of 1 multiplicity and f is of type ERef .
For other multiplicity r , a for loop implementation of g 7−→ r .h is used:

for (rx in fx.r)

{ rx.h = ex.g.equivalent(’G2H’); }

If there is no direct mapping f 7−→ r , r is of ∗ multiplicity, and the only fea-
ture mappings f 7−→ r .g of E 7−→ F are such that f ’s upper multiplicity is 13,

3ie., f is of 1 or 0..1 multiplicity
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then r can be defined by an additional variable var rx = new MM 2!R; rx .g =
ex .f .equivalent(′ERef 2G ′); which has additional assignments rx .l = ex .k .equivalent(′K 2L′);
for each k 7−→ r .l , k of type K , l of type L. The rx creation is conditional on
ex .f .isDefined() if f is 0..1 multiplicity. Likewise, additional assignments are
conditional if k is of 0..1 multiplicity.

If there are cases of mappings f 7−→ r .g where f and r are of *-multiplicity,
then instead sets of R elements are created using lazy rules or operations. In
this case, if f has a class type ERef , and r .g has class type G , the mapping
f 7−→ r .g in cases where r and f have * multiplicity can be implemented by
introducing a new lazy rule:

rule E2F

transform ex : MM1!E

to fx : MM2!F {

guard: ( ex.Cond )

fx.r = ex.f.equivalent(’MapERef2Rg’);

}

@lazy

rule MapERef2Rg

transform erefx : MM1!ERef

to rx : MM2!R {

rx.g = erefx.equivalent(’ERef2G’);

}

The effect of this approach is to produce a set of R objects, one for each element
erefx of ex .f . R must be a concrete class for this to be valid.

Further updates to the r with additional E 7−→ F mappings k 7−→ r .l with
l .upper = 0 or l .upper ≥ k .upper must be handled in further for loops of the
E2F rule:

for (rx in fx.r)

{ rx.l = ex.k.equivalent(’K2L’); }

Further updates to the r with additional E 7−→ F mappings k 7−→ r .l with
l .upper 6= 0 and k .upper = 0 require the creation of additional R objects via a
new lazy rule MapE22R1:

fx.r.addAll(ex.k.equivalent(’MapE22Rl’));

If instead f has a value type T , the mapping f 7−→ r .g can be implemented
by introducing a new called operation:

rule E2F

transform ex : MM1!E

to fx : MM2!F {

guard: ( ex.Cond )

fx.r.addAll(f.MapT2Rg());
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}

operation T MapT2Rg()

{ var rx = new MM2!R;

rx.g = self;

return rx;

}

The generated code has a systematic structure, and all calls of rules via
equivalent have been made explicit. Duplication of code due to common feature
mappings of inheritance related T L rules is avoided by using ETL rule inher-
itance. However, excessive rule and transformation size may occur due to the
size of the metamodels.

3.2 Generation of QVT-O transformations

QVT-O is structured around imperative mapping rules, which are the counter-
part of QVT-R relations.

Mapping rules

mapping E::E2F() : F {}

implement the first phase of a T L class mapping E 7−→ F , and rules

mapping E::MapE2F() : F

{ init

{ result :=

self.resolveoneIn(E::E2F(),F); }

result.q1 := t1;

...;

result.qn := tn;

}

perform the second phase object linking and assignment of features according to
feature mappings pi 7−→ qi , where the ti compute the representation of self .pi
in the target model. The disjuncts mechanism of QVT-O is used to express rule
inheritance.

In QVT-O expression-to-feature mappings expr 7−→ r are implemented
(schematically) by assignments of the form:

result.r := (self.expr)->xcollect( _x |

_x.resolveoneIn(E1::E12F1,F1) );

An example of QVT-O synthesis is shown in Figure 4.
The overall scheduling of rules in a QVT-O transformation is carried out by

the main() operation:

main()

{ in.objects[E]->map E2F();
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Figure 4: Automated synthesis of weighted/unweighted Petri Nets case [14]
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...

in.objects[A]->map mapE2F();

...

}

All first phase mappings are performed before any of the second phase mappings.
Unlike UML-RSDS, new key attributes are not needed, as QVT-O uses implicit
tracing.
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