
Using the AgileUML program translators

K. Lano

October 22, 2022

1 Introduction

The AgileUML toolset supports program translation from Java, C, VB6 and
JavaScript to Python, C#, C++, Swift and Go [3]. It is also possible for users
to define and add their own code translators to the tool, and modify existing
code translators.

2 Installing AgileUML and Antlr

A complete bundle of the AgileUML and Antlr tools and auxiliary files needed
for program translation is in translators.zip at: github.com/eclipse/agileuml
and at agilemde.co.uk/translators.zip.

This is for Windows 10+ with Java JDK 1.8 but should run under other
Windows environments.

The bundle includes:

1. umlrsds .jar – main AgileUML executable

2. libraries subdirectory – all language-specific libraries needed for target
Swift, C#, etc code.

3. cg subdirectory – the abstraction scripts for Java, VB6, JavaScript and
C.

4. uml2py subdirectory – the code generator for Python

5. uml2Ca, uml2Cb – code generators for C.

6. Scripts js2py3.bat , java2cpp.bat , java2cs.bat , java2py3.bat , java2swift .bat
– execute the respective translations on the file given as argument.

7. grun.bat – Antlr script to execute an Antlr parser and output a parse
tree. Uses antlr − 4.8− complete.jar Antlr tool and the Java, JavaScript,
VisualBasic6 and C parser files for Antlr 4.

8. output directory containing example Java, C and JavaScript programs and
their translations.

1



To run a translation on the command line, do:

js2py3 inputFile

The resulting Python file is written to app.py . Likewise for java2py3. The
java2cs and java2cpp scripts write their output to the output directory.

Example files are jsOldClass5Source.txt (JavaScript), BondappSource.txt
(Java), QuickSortAsc.txt (VB6) and callocSource.txt (C).

3 Running abstraction and translation from Ag-
ileUML

Apart from the translations performed by the shell scripts, other translations
can be carried out by abstracting source code to UML/OCL and then code-
generating to the target language.

The output/ast.txt files can be produced by running the Antlr parsers for
Java, JavaScript, VB6 or C on source code, eg., as:

grun Java compilationUnit -tree

grun JavaScript program -tree

grun C compilationUnit -tree

grun VisualBasic6 module -tree

Start AgileUML:

java -jar umlrsds.jar

Necessary libraries can be loaded from the Extensions menu option “Import
library”.

The File menu options “From Java AST”, “From JavaScript AST”, “From C
AST” and “From VB6 AST” abstract a parsed source program from output/ast .txt
file, and produce a UML/OCL specification in the main AgileUML window (Fig-
ure 1).

The abstracted specification can be viewed in detail using the Edit menu
option “Edit KM3” (Figure 2).

Quality checks such as checks for clones can be performed from the View
menu (optional).

Type check the specification using the Synthesis menu option, then generate
target code using Build menu options. Java8 code is produced by the Android
app generation option, and Swift code by the iOS app generation options.

Output code is usually written to the output subdirectory, but Python code
is written to app.py in the main directory.

Depending on the source code, various support libraries may need to be
imported, prior to abstraction:

1. mathlib.km3 – mathematical and financial operations and byte manipu-
lation/bitwise operators

2



Figure 1: Abstracting programs to specifications

Figure 2: Viewing abstracted specification

3



2. ocldate.km3 – for OclDate type

3. oclexception.km3 – supports exceptions

4. oclfile.km3 – supports text files

5. oclprocess.km3 – supports processes, threads and operating system access

6. oclrandom.km3 – random number generation

7. ocltype.km3 – supports reflection

8. ocliterator.km3 – for iterators

9. ocldatasource.km3 – for databases, TCP sockets and HTTP. This depends
on ocliterator, oclfile and ocldate.

3.1 Restrictions and limitations

For Java abstraction, we cover Java versions 6 and 7, and the most widely-used
libraries in java.lang, java.io, java.util and java.math. Swing and other UI code
is not abstracted. There is limited support for Internet/database processing.
File support is primarily for text files.

For C, the ANSI C subset of [1] is covered, however pointers only translate
with certain restrictions. File support is for text files.

For JavaScript, ECMAScript 2015 classes are abstracted, but not all cases
of older style definitions of classes by constructor functions or object literals.
The block scope of ECMAScript 2015 is adopted.

For VB6, only the core language is supported. Gotos and gosub and error
handling are not supported.

4 Modifying the abstraction and code-generation
tools

The abstraction and code-generation scripts can be extended or customised as
required.

The abstraction scripts are in cg/Java2UML.cstl, cg/JS2UML.cstl and cg/C2UML.cstl,
cg/VB2UML.cstl, together with their associated auxiliary scripts. These take
as input parse trees in output/ast .txt produced by Antlr parsers for Java,
JavaScript, C and VB6, respectively.

The CSTL scripts can be executed via the Build menu option “Apply CSTL
to AST”, which loads a selected .cstl file from the cg subdirectory, and applies
this to output/ast .txt .

The scripts are written in CST L [2] and can be edited with a text editor.
To write an abstraction script for a new programming language, use a struc-

ture similar to the VB2UML.cstl abstractor, with rulesets specific to the gram-
mar of the new language. It is also possible to use the antlr2cstl script to

4



generate an outline CSTL abstraction file for a language L supported by an
Antlr grammar L.g4. Parse the L.g4 grammar (parser rules only) using the
ANTLRv4 grammar of Antlr:

grun ANTLRv4 rules -tree

to obtain an AST of the L grammar, place this in output/ast.txt and run
antlr2cstl .

5 Further information

The latest version of AgileUML is at https://github.com/eclipse/agileuml, code
generator and abstraction scripts are in cg.zip and supporting libraries in li-
braries.zip.

A substantial dataset of translation examples can be found at: zenodo.org/record/7107604.

References

[1] B. Kernighan and D. Ritchie. The C Programming Language. Prentice Hall,
2nd edition, 1988.

[2] K. Lano, 2022. Using the code generator language CSTL, ag-
ilemde.co.uk/cgrules.pdf.

[3] K. Lano. Program translation using Model-driven engineering. In ICSE
2022 Companion Proceedings, 2022.

5


