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Abstract

In this paper we describe a substantial example of model-driven development (MDD)
applied to model transformation (MT) development. A detailed requirements engineering
process was followed, together with an agile MDD process. The transformation maps UML
specifications to ANSI C code, and it is written using the UML-RSDS MDD specification
language. We evaluate the effectiveness of the MDD approach, and show that it has benefits
compared to MT construction using conventional development of code generators.

1 Introduction

Model transformations such as code generators are essential to model-driven engineering (MDE)
and model-driven development (MDD). However, the construction of transformations has not
generally involved rigorous development approaches, instead transformations have often been de-
veloped in an ad-hoc manner, dependent on the characteristics of (in many cases) still experimental
MT languages [23, 6].

In this paper we describe the systematic software engineering of a large scale code generator
for mapping UML to ANSI C. Specifically, an agile MDD development process is used to produce
the code generator. This case study will provide evidence for the feasibility and benefits of such
a systematic approach to MT development.

Although the C language is now over 40 years old, it is still in widespread use, especially for
applications requiring high efficiency and small code size. Therefore it was considered useful to
provide such a generator. Existing C code generators for UML do not map detailed functional
specifications (expressed, for example, in OCL or by UML activities) into C, and we wished
to provide a generator which would implement a large part of the OCL library and provide
full functional implementations of UML operation specifications and activities. In this respect,
the generator can be used as a ‘virtual machine’ for the execution of UML/OCL and for model
transformations (MT) expressed in UML/OCL, as an alternative to the more usual Java/JVM
implementation route for UML [26]. A technical overview of the OCL translator was published
in [14], in this paper we focus on the agile MDD software engineering process used to develop the
translator.

We use the UML-RSDS subset of UML as the input language for the translator [13]. UML-
RSDS models systems, including model transformations, using UML 2 class diagrams, OCL 2.4
and use cases at the specification level. State machines and interactions may optionally be used.
At the design level, UML activities using a pseudocode notation are used. Relative to the fUML
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executable subset of UML [21], UML-RSDS has a more declarative orientation. As in the case of
fUML, certain UML notations and modelling elements have been excluded from UML-RSDS in
order to achieve a more coherent and precise modelling language (Table 1). Applications (such
as the UML to C code generator itself) are specified using class diagrams, use cases and OCL
constraints with a clear semantic meaning, and designs are then generated semi-automatically
from these. From the design, code in Java, C# or C++ can be automatically generated (Figure
1). The UML to C translator, UML2C, will take as input text files model.txt which define the
design level of an application as an instance model of the UML-RSDS class diagram, OCL and
activities metamodels (Figures 6, 8, 10). It is assumed that these models are syntactically correct
wrt the metamodels, and that type checking and design generation steps have been performed
prior to export of the data.

Figure 1: UML-RSDS software production process

UML2C is an example of the reflexive application of UML-RSDS to operate on UML-RSDS
models. This technique enables the extension of the UML-RSDS tools with new capabilities such
as customised XML production, document and code generators, analysis reports and new semantic
mappings, etc. It also supports the use of UML-RSDS to define textual domain-specific languages
(DSLs) and associated tools.

1.1 Requirements engineering

We have described a requirements engineering process for MT in [25], and explained how the RE
techniques for the case study were selected. In this paper we give the details of the applications
of the selected techniques (document mining, interviews, scenario analysis, goal decomposition,
prototyping, UML specification, inspection, testing and refactoring).

The selected RE techniques were used in the case study as follows:

• Document mining: this involves comprehensive background research into relevant documents
and software, specifically C standards, textbooks, compilers and forums, and review of ex-
isting code generators for C and the UML-RSDS code generators.

• Interviews: elicitation of requirements from stakeholders via structured interviews.

• Scenario analysis: detailed consideration of specific scenarios (model elements and structures
of linked elements) which the translator should process. Both normal and abnormal (error)
scenarios can be considered. Scenario analysis is a widely-used technique, however it can
suffer from incompleteness, since in general it is not possible to identify all scenarios. In the
case of model transformations this problem can be addressed by systematically considering
each source language entity type and the relevant alternative structures of their instances
which may occur in source models.
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• Goal decomposition: this breaks down a requirement (eg., a user story) into subcases or
subtasks which can be considered separately. As with scenarios, this decomposition was
made on the basis of the source language structure.

• Prototyping: parts of the transformation are implemented in an initial form and tested
using example models to identify if the intended mappings are correctly defined. This is an
iterative process with successive refinement of the implementation based upon stakeholder
feedback. In our case, the evolved prototype is also the final deliverable.

• UML specification: semi-formal specification of mappings, using concrete grammar of the
source and target languages, is initially used to define the functional requirements. These
specifications are then formalised as OCL constraints based upon the abstract syntax of the
source and target languages.

• Inspection: systematic review of the specifications is performed to check their syntactic
and semantic correctness, and their validity wrt requirements. As noted below in Section
7.2, we found that inspection of specifications was substantially more time-efficient than
code inspection, corresponding to a 4-fold size reduction of the specification compared to
executable code.

• Testing: test cases were manually constructed for each functional requirement. MDD pro-
vides the possibility of model-based test case generation, however we did not find any existing
tools which would provide the necessary capability, and there were insufficient resources to
develop our own.

• Refactoring: the specification structure was continuously reviewed and reorganised based
on a number of MT design patterns and refactoring rules. This resulted in improvements
in modularity, simplicity and a reduction in redundancy. Again, the use of specifications
reduced the time and effort needed to perform refactoring/apply patterns compared to ap-
plication of patterns or refactoring at code level.

We distinguish between global and local requirements for model transformations: a global
requirement concerns properties of the source/target models or transformation considered as a
whole (such as the syntactic correctness of the target model wrt its metamodel), whilst local
requirements concern properties specific to particular types of model elements or particular kinds
of structures in the models (such as a mapping requirement for the mapping of UML inheritance
to C).

The initial requirements of the UML to C translator were identified using the elicitation tech-
niques of interviews, document mining and scenarios. These produced the top-level functional
requirement:

F1: Translate UML-RSDS designs (UML 2 class diagrams, OCL 2.4, activities and
use cases) into ANSI C code.

The identified stakeholders included: (i) the UML-RSDS development team; (ii) users of UML-
RSDS who require C code for embedded or limited resource systems; (iii) end-users of such systems.

As we have found in our empirical research [11], access to indirect stakeholders is often restricted
in MT developments, because the transformation is often developed for MDD specialists, who are
remote from end users of applications produced using the transformation. In this case direct access
was only possible to stakeholders (i). Access to other stakeholders was substituted by research
into the needs of such stakeholders, using document mining of sources such as C text books, the C
standard, and specialised standards, particularly MISRA C [17]. The risk therefore remains that
the C code produced may not be acceptable to category (ii) or (iii) stakeholders.

An initial phase of requirements elicitation for this system used document mining (research
into the ANSI C language and existing UML to C translators) and a semi-structured interview
with the principal stakeholder. This produced an initial set of requirements, with priorities. It
was determined that the complete set of language restrictions of MISRA C would not be followed,
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and instead the focus would be on supporting the implementation of UML in C for general users.
Thus, we target the ANSI ’89 standard version of C, as described in [7].

Using goal decomposition, the functional requirement was decomposed into five high-priority
subgoals, each of which can be further decomposed into subgoals (Figure 3):

• F1.1: Translation of types

• F1.2: Translation of class diagrams

• F1.3: Translation of OCL expressions

• F1.4: Translation of activities

• F1.5: Translation of use cases.

This decomposition is based upon the main division of the UML-RSDS language into sublanguages,
with types as a fundamental component which the other sublanguages depend upon, with OCL
expressions defined using class diagram elements, and activities and use cases defined using OCL.

The mapping of OCL expressions depends upon the prior mapping of types and class struc-
tures, however we aimed for this mapping to be relatively independent of the strategy chosen for
representing classes in C (eg., how inheritance and dynamic dispatch is expressed). To achieve
this, all access to objects and their features in the C code is provided via an interface of creators,
lookup operations and getters/setters which have a standard signature independent of their im-
plementation details. This application API is defined in the header file app.h for each application.
A library ocl.h of C functions for OCL operators is also defined, and the evaluation/execution of
OCL expressions, operations and use cases is based upon app.h and ocl.h (Figure 2).

Figure 2: Application architecture of generated C code

The transformation structure is a sequential composition of separate transformations for the
five sublanguage mappings, using the concept of phasing or layering organisation of transformations
[9]. This structure of relatively independent transformation parts enables the development to be
organised into five iterations, one for each translator part. The initial product backlog for the
development consisted of F1.1 to F1.5, and the iteration backlog for the first iteration consisted
of the subtasks of F1.1. Each iteration was given a maximum duration of one month. The overall
development bound was 6 months (process requirement NF10).

Other high-priority requirements identified for the translator were the following functional and
non-functional system (product) requirements:

• NF1: Termination, given correct input.
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Figure 3: Functional requirements decomposition in SysML

• F2: Syntactic correctness: given a correct UML-RSDS design model as input, a valid C
program will be produced.

• F3: Model-level semantic preservation: the semantics of the source (UML model) and target
(C code or model) are equivalent.

• F4: Traceability: a record should be maintained of the correspondence between source and
target elements.

Medium-level priority requirements were:

• F5: Bidirectionality (bx property) of the transformation between source and target models.

• NF2: Efficiency: input models with 100 classes and 100 attributes per class should be
processed within 30 seconds.

• NF3: Modularity of the transformation.

• NF6: Produce efficient code, of similar or higher efficiency as equivalent hand-produced
code.

• NF7: Produce compact code, of the same or smaller size as equivalent hand-produced code.

Low-priority requirements were:

• F6: Confluence.

• NF4: Flexibility: ability to choose different C interpretations for UML elements.

There are potential conflicts between the requirements:

• NF2 conflicts with F4, F5 and NF3 because the additional structure needed for tracing and
bx properties impairs efficiency, and the decomposition of the transformation into subtrans-
formations composed sequentially also slows execution.

• NF4 conflicts with NF10 as the additional work required for NF4 would need substantial
additional time resources.
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• NF6 conflicts with F3 because in some cases semantic correctness will require inefficient
coding, eg., because OCL collection operators produce modified copies of their arguments
instead of updating them in-place.

It was identified that a suitable overall architecture for the transformation was a sequential
decomposition of a model-to-model transformation design2C , and a model-to-text transformation
genCtext . Decomposing the code generator into two sub-transformations improves its modularity,
and simplifies the transformation rules, which would otherwise need to combine language trans-
lation and text production. Figure 4 shows the resulting transformation architecture. This is an
example of the architectural pattern Factor Code Generation into Model-to-model and Model-to-
code [5, 16].

Figure 4: C code generator architecture

This decomposition means that each of the high-level requirements need to be satisfied by
both design2C and genCtext . The requirements for bidirectionality and traceability are however
specific to design2C .

Sections 2, 3, 4, 5 and 6 describe the five development iterations, Section 7 gives an evaluation,
Sections 8, 9 describe related and future work, and Section 10 gives conclusions. The appendix
summarises the C semantics which we use to justify semantic preservation.

1.2 Methodology

We adopted an agile MDD approach to develop the code generator.
The key principles of agile development include (agilemanifesto.org): (i) satisfy the customer

through early and continuous software delivery; (ii) welcome changing requirements; (iii) deliver
working software frequently (every 2 weeks to every 2 months); (iv) business people and devel-
opers to work together daily; (v) rely on face-to-face communication to convey information; (vi)
continuous attention to software quality; (vii) simplicity is essential.

To achieve these principles, the following agile practices were used in the development: (i)
short iterations (principles (i) and (iii)); (ii) refactoring (principle (vi)); (iii) emphasis on sim-
plicity (principle (vii)); (iv) product and iteration backlogs (principles (i), (ii)); (v) Scrumboards
(principles (i), (ii)); (vi) continuous reviews, integration and testing (principle (vi)). Due to the
lack of direct end-user contacts, it was not possible to achieve principle (iv).

The following MDD practices were used: (i) metamodelling; (ii) transformations; (iii) exe-
cutable modelling. An adapted Scrum process [22] was followed, with executable models being
used in place of code. Figure 5 shows our agile MDD process – the UML to C translator develop-
ment is an example of tool development (RHS of Figure 5).

Within each iteration, phases of requirements analysis, specification, implementation and test-
ing were applied to each task, and the following process was generally followed:

1. Exploratory prototyping and research to assess the feasibility and semantic validity of pos-
sible C programming approaches to express UML and OCL elements. The Visual Studio
(2012), gcc (2016) and lcc1 (2016) C compilers were used.

1www.cs.virginia.edu/∼lcc-win32
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Figure 5: UML-RSDS agile MDD process: iterations

2. Informal specification in concrete grammar of the mappings from UML to C. Discussion of
the informal specification with stakeholders/team members.

3. Formalisation of the mappings as UML-RSDS rules and operations.

4. Specification review/refactoring.

5. Prototyping and testing of these specifications; integration with other software elements;
revision of specifications as necessary to pass tests and efficiency requirements. Test cases
were manually constructed for each local functional requirement.

6. Deployment/delivery as Java jar executables.

We grouped iterations 1 and 2 in one executable (uml2Ca.jar), and iterations 3, 4 and 5 in
another (uml2Cb.jar). We refer to the complete translator as UML2C.

1.3 UML-RSDS restrictions

UML-RSDS omits constructs of UML and OCL which have complex semantics, such as the general
iterate operator of OCL. It also adopts computational numeric types int, long, double in order
to align the specification more closely to implementations (Table 1).

Collections are assumed to not contain null elements. String-valued attributes can be declared
as identity attributes, ie., as primary keys for a class. Classes with a subclass must be abstract.

Minor syntactic variations are the use of ⇒ for OCL implies, →exists1 for →one, and & for
and . E .allInstances is abbreviated to E when used as the LHS of a → operator. s→includes(x )
can also be written as x : s, s→includesAll(x ) as x <: s, and s→excludes(x ) as x / : s.

2 Iteration 1: Type mapping

This iteration was divided into three phases: detailed requirements analysis; specification; imple-
mentation and testing.

Detailed requirements elicitation used structured interviews to identify (i) the source language;
(ii) the mapping requirements; (iii) the target language; (iv) other functional and non-functional
requirements for this sub-transformation. Scenarios and test cases were prepared.
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UML/OCL UML-RSDS subset/variant

Ternary associations, Omitted
Multiple inheritance
General n..m multiplicities Only 1, 0..1, or * multiplicities
on association ends permitted
Integer type int, long computational numeric types
Real type double computational type
null, invalid Omitted
OclMessage, Tuple Omitted
Implicit conversion of single Omitted. 0..1 association ends
elements to collections are treated as collections
4-valued logic Classical 2-valued logic
General iterate Omitted
OclAny, oclType() Omitted

Lookup of objects by primary key value
E[value]
Additional collection operators →sort(),
→front(), →tail(), etc

Table 1: Differences between UML-RSDS and UML

The source language was identified as the Type class and its subclasses in the standard UML-
RSDS class diagram metamodel (Figure 6, based upon UML 2.1 but with multiple inheritance
between metaclasses removed). Not all elements of this metamodel are needed for the transfor-
mation, in particular Constraint is not needed, nor are the associations linkedClass, ownedLiteral
or the classes Enumeration, EnumerationLiteral in this version of the transformation.

A model of Figure 6 is concretely represented as a text file with each line describing either (i)
that an object exists in a particular concrete metaclass, eg:

c : Entity

p : Property

or (ii) that an attribute or 1-multiplicity role has a particular value:

c.name = "A"

p.type = Integer

or (iii) that an object is in a many-multiplicity role:

p : c.ownedAttribute

c : p.owner

The initial target language is a simplified version of the abstract syntax of C programs, sufficient
to represent UML types (Figure 7). This language is open to further elaboration and extension
during the development.

Using goal decomposition, the type mapping requirement F1.1 was decomposed into specific
mapping requirements F1.1.1 to F1.1.4 for the translation of different categories of UML types
(Table 2). The schematic concrete grammar is shown for the C target representation of each
category of UML type. This mapping has the advantage of simplicity, and the T* operator directly
interprets Collection(T) for sequences and (ordered) sets of objects, collections and strings. A
representation for bags and an alternative (unordered) set representation have been implemented
as binary search trees in ocl.h.

Requirements specification formalises these mappings as UML-RSDS rules, defining the post-
conditions of a transformation types2C . Scenario analysis and evolutionary prototyping were used
for this stage. The Auxiliary Correspondence Model pattern [12] was used to achieve the bidirec-
tionality requirement, and the traceability requirement. A new identity attribute typeId : String
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Figure 6: UML-RSDS class diagram metamodel

Figure 7: C language metamodel
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Scenario UML element C representation e’

F1.1.1.1 String type char*

F1.1.1.2 int, long, double types same-named C types
F1.1.1.3 boolean type unsigned char

F1.1.2 Enumeration type C enum

F1.1.3 Entity type E struct E* type
F1.1.4.1 Set(E ) type struct E** (array of E’, without duplicates)
F1.1.4.2 Sequence(E ) type struct E** (array of E’, possibly with duplicates)

Table 2: Informal scenarios for types2C

was introduced into Type, and ctypeId into CType. This enables Type and CType instances to be
looked-up by key value: Type[id ] is the type instance t with t .typeId = id . An instance t : Type
corresponds to an instance c : CType if t .typeId = c.ctypeId .

An example of a scenario expressed in the SBVRSE notation for SysML [19] is (for F1.1.1.1):

It is necessary that each string type PrimitiveType instance s maps to a CPointerType
instance p such that p.ctypeId = s.typeId , and to a CPrimitiveType instance c such
that p.pointsTo = c and c.name = “char”.

Each PrimitiveType is considered to be a string type PrimitiveType if it has name
“String”.

Such representations can be directly expressed as UML-RSDS transformation rule specifications:

PrimitiveType::

name = "String" =>

CPointerType->exists( p | p.ctypeId = typeId &

CPrimitiveType->exists( c | c.name = "char" & p.pointsTo = c ) )

In this rule, the quantification is over objects self : PrimitiveType, and expresses that whenever
the lhs of the rule is true, the rhs should be made true, ie., the relevant C types should be looked-up
or created if they do not already exist.

Primitive types, entity types and collection types are successively mapped. It is assumed that
collection types can only have entity types or primitive types as their element types:

CollectionType ::
elementType : Entity or elementType : PrimitiveType

This ensures that, in the final two rules below, CType[elementType.typeId ] does exist at the point
where it is looked-up: it has been created by earlier rules operating on the element type. Some
example transformation rules of types2C are:

PrimitiveType::

name = "int" =>

CPrimitiveType->exists( p | p.ctypeId = typeId & p.name = "int" )

PrimitiveType::

name = "String" =>

CPointerType->exists( t | t.ctypeId = typeId &

CPrimitiveType->exists( p | p.name = "char" & t.pointsTo = p ) )

Entity::

CPointerType->exists( p | p.ctypeId = typeId &

CStruct->exists( c | c.name = name & c.ctypeId = name & p.pointsTo = c ) )

CollectionType::

name = "Sequence" =>
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CArrayType->exists( a | a.ctypeId = typeId & a.duplicates = true &

a.componentType = CType[elementType.typeId] )

CollectionType::

name = "Set" =>

CArrayType->exists( c | c.ctypeId = typeId & c.duplicates = false &

c.componentType = CType[elementType.typeId] )

The mapping of strings and entity types is an example of the Entity Splitting MT pattern [9],
in which one source instance is mapped to two or more linked target instances (t and p in the
mappings of string type instances).

During requirements validation and verification of this subtransformation, the bx properties
were proved. The above constraints can be inverted automatically to:

CPrimitiveType::

name = "int" =>

PrimitiveType->exists( t | t.typeId = ctypeId & t.name = "int" )

CPointerType::

p : CPrimitiveType & p.name = "char" & pointsTo = p =>

PrimitiveType->exists( t | t.typeId = ctypeId & t.name = "String" )

CPointerType::

c : CStruct & pointsTo = c =>

Entity->exists( e | e.typeId = ctypeId & e.name = c.name )

CArrayType::

duplicates = true =>

CollectionType->exists( t | t.typeId = ctypeId & t.name = "Sequence" &

t.elementType = Type[componentType.ctypeId] )

CArrayType::

duplicates = false =>

CollectionType->exists( t | t.typeId = ctypeId & t.name = "Set" &

t.elementType = Type[componentType.ctypeId] )

This establishes the bx property for types2C .
In addition, reasoning by cases shows that the C code resulting from a valid input UML model

does conform to C syntax. The corresponding part of genCtext was developed alongside types2C .
Various toString() : String operations in the different C language classes carry out the basic actions
of genCtext .

Testing was also used for validation, in addition to inspection and formal arguments for the
satisfaction of the requirements.

The iteration took 1 month, with several cycles of specification and testing needed until all
functional and non-functional requirements were met. NF1 and F6 are achieved because all the
transformation constraints are of type 1 (bounded loops). F2 was ensured by checking the gener-
ated syntax against the ANSI ’89 C standard. F3 was ensured by constructing a semantic model
SemC (p) of the generated C programs p (in first-order set theory) and checking that this is equiv-
alent to the corresponding mathematical model SemUML(m) of UML/OCL models m [15], when
p is generated from m. F4 is ensured by the use of the Auxiliary Correspondence Model pattern,
as is the bx requirement F5. NF2 was checked for the uml2Ca release and found to be satisfied
(Table 5).

In this iteration, the specification effort included construction of the C metamodels for use
in subsequent iterations, and writing ocl.h, and the verification effort included verification of the
ocl.h library. The transformation size was 10 rules and 5 operations. A further medium level
non-functional requirement was added during this iteration:

• NF5: Usability of the transformation – it should be a simple process to invoke it from the
UML-RSDS toolset interface.
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The estimated effort for this iteration is shown in Table 3.

Stage Effort (person days)

Req. Elicitation 2
Eval./Negotiation 1
Specification 7
Review/Validation 8
Implementation/ 10
Testing

Total 28

Table 3: Development effort for Iteration 1

3 Iteration 2: Class diagram mapping

This iteration also used a three-phase approach, to define a subtransformation classdiagram2C .
The class diagram elements Property , Operation, Entity , Generalization from Figure 6 were iden-
tified as the input language. Scenario analysis and exploratory prototyping was used for require-
ments elicitation and evaluation.

The C representation in Figure 7 is sufficient as a target language for this subtransforma-
tion, with the addition of isKey : boolean and isQuery : boolean attributes to CMember and
COperation, respectively. A scope : String attribute is added to COperation to distinguish opera-
tions representing entity methods (scope = “entity”) from those representing use cases (scope =
“application”).

The scenarios of the local mapping requirements for class diagram elements are shown in Table
4.

Scenario UML element e C representation e’

F1.2.1 Class diagram D C program with D ’s name

F1.2.2 Class/interface E struct E { ... };
Global variable struct E** e instances;

Global variable int e size;

struct E* createE(void) operation
struct E** appendE(struct E**, struct E*) operation
struct E** insertE(struct E**, struct E*) operation
struct E** newEList(void) operation

F1.2.3.1 Instance-scope attribute p : T Member T’ p; of the struct for p’s owner, E ,
(not principal identity where T’ represents T
attribute) Operations T ′ getE p(E ′ self )

and setE p(E ′ self ,T ′ px )

F1.2.3.2 Principal identity attribute Operations getE p, setE p,
p : String of struct E* getEByPK(char* v)
class E Key member char* p; of the struct for E

F1.2.4 Operation op(p : P) : T of E C operation
(instance-scope) T’ op E(E’ self, P’ p)

with scope = “entity”

F1.2.5 Inheritance of A by B Member struct A* super;

of struct B
Operations getB att(x ) for inherited att
invoke getA att(x→super).
op B(x , p) for inherited op invokes
op A(x→super , p) unless B redefines op

Table 4: Informal scenarios for the mapping of UML class diagrams to C
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In the UML-RSDS design, associations are represented by the memberEnd[2] Property, which
is a feature of the entity at end 1 of the association. In the case of a bidirectional association, the
memberEnd[1] Property is also defined in the design, and is also mapped to C. The maintenance
of the mutual consistency of the opposite ends ar , br of an A − B association is carried out by
operations addA br(ax : A, bx : B), removeA br(ax : A, bx : B), etc. These are synthesised
in the UML-RSDS design stage and hence are translated to C by the mapping from Operation
to COperation [14]. Likewise, object deletion operations killA, killAbstractA are included in the
design.

Several alternative schemes were considered for representing inheritance in C: (i) struct inher-
itance with a superclass pointer in each subclass and explicit coding of method overriding using
conditionals; (ii) embedded superclass struct instance in each subclass struct, and function point-
ers for each supported method; (iii) as (ii) but with vtables for function pointers; (iv) Objective-C
style metaprogramming of classes and objects.

We chose option (i) as the simplest possible scheme, with the intention to move to (ii) or (iii)
in future releases. Option (iv) was rejected because the resulting code is excessively complex and
quite distant in style from conventional C coding.

All of these local mapping requirements F1.2.1 to F1.2.5 are of high priority. As with iteration
1, bx properties are of high priority for this subtransformation.

The mappings were formalised as UML-RSDS rules. The corresponding part of genCtext was
also written, enabling complete C programs to be produced: operations printProgramHeader(),
printDeclarations(), printOperations() and printMainOperation() of CProgram display the text of
these C program parts.

For F1.2.2, the definition of structs for entities is carried out by types2C. The global variables
are created by the following constraint of genCtext :

CStruct::

("struct " + name + "** " + name.toLowerCase() + "_instances = NULL;")->display() &

("int " + name.toLowerCase() + "_size = 0;")->display()

Getters and setters are created by CMember operations such as getterOp, setterOp, getAllOp:

CMember::

query getterOp(ent : String) : String

post:

result =

type + " get" + ent + "_" + name +

"(struct " + ent + "* self) { return self->" + name + "; }\n"

CMember::

query setterOp(ent : String) : String

post:

result =

"void set" + ent + "_" + name +

"(struct " + ent + "* self, " + type + " _value) { self->" + name + " = _value; }\n"

CMember::

query getAllOp(ent : String) : String

pre: type : CPrimitiveType

post:

result = type + "* getAll" + ent + "_" + name + "(struct " + ent + "* col[])\n" +

"{ int n = length((void**) col);\n" +

" " + type + "* result = (" + type + "*) calloc(n, sizeof(" + type + "));\n" +

" int i = 0;\n" +

" for ( ; i < n; i++)\n" +

" { result[i] = get" + ent + "_" + name + "(col[i]); }\n" +

" return result;\n" +
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"}\n"

CMember::

query getPKOp(ent : String) : String

post:

e = ent.toLowerCase &

result =

"struct " + ent + "* get" + ent + "ByPK(char* ex)\n" +

"{ int n = length((void**) " + e + "_instances);\n" +

" int i = 0;\n" +

" for ( ; i < n; i++)\n" +

" { char* attv = get" + ent + "_" + name + "(" + e + "_instances[i]);\n" +

" if (attv != NULL && strcmp(attv,ex) == 0)\n" +

" { return " + e + "_instances[i]; }\n" +

" }\n" +

" return NULL;\n" +

"}\n"

Here, the Text Templates MT pattern [9] is used to combine fixed text portions with variable
model-derived elements. The Auxiliary Metamodel pattern is used to introduce an auxiliary
association allMembers from CStruct to CMember , which records all C members explicitly in or
inherited by a struct.

The text generation operations are then used in the postconditions of the genCtext use case:

CStruct::

f : members & f.name /= "super" => f.getterOp(name)->display()

CStruct::

f : members & f.name = "super" => f.inheritedGetterOps(name)->display()

CStruct::

members->exists( k | k.isKey & k.isStringType() ) &

key = members->select( isKey & isStringType())->any() =>

key.getPKOp(name)->display() & self.getPKsOp()->display()

CStruct::

f : members & f.name /= "super" => f.setterOp(name)->display()

CStruct::

f : members & f.name = "super" => f.inheritedSetterOps(name)->display()

CStruct::

f : members & f.type : CPrimitiveType => f.getAllOp(name)->display()

CStruct::

f : members & f.name /= "super" & f.type : CPointerType => f.getAllOp1(name)->display()

CStruct::

f : members & f.name = "super" & f.type : CPointerType => f.inheritedAllOps(name)->display()

CStruct::

members->exists( k | k.isKey & k.isStringType() ) &

key = members->select( isKey & isStringType() )->any() =>

self.createPKOp(name, key.name)->display()
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CStruct::

true =>

self.createOp(name)->display()

This use case also generates the createE and newEList operations, and other operations specific
to E, such as collectE, selectE, rejectE, intersectionE, unionE, reverseE, frontE, tailE, asSetE,
concatenateE, removeE, removeAllE, subrangeE, isUniqueE, insertAtE, etc. Selective generation
of OCL operators is used, so that operations opE are only generated for OCL operators op if there
is an occurrence of →op applied to a collection of E elements in the source model. This facilitates
achieving NF7.

The attributes (and association ends) owned by a class are mapped to members of its corre-
sponding struct (F1.2.3):

Entity::

CStruct->exists( c | c.name = name &

ownedAttribute->forAll( p | p.name.size > 0 =>

CMember->exists( m | m.name = p.name & m.isKey = p.isUnique &

m.type = CType[p.type.typeId] & m : c.members ) ) )

This constraint is in an invertible form according to [12]. Both single-valued and multi-valued
attributes are mapped correctly by this scheme. However, static attributes would need to be
represented as global scope C variables external to the struct definition of their entity.

F1.2.4 is specified by:

Operation::

COperation->exists( op | op.name = name + "_" + owner.name &

op.opId = name + "_" + owner.name &

CVariable->exists( p | p.name = "self" &

p : op.parameters & p.kind = "parameter" & p.type = CType[owner.typeId] ) &

parameters->forAll( x | CVariable->exists( y | y.name = x.name &

y.kind = "parameter" &

y.type = CType[x.type.typeId] &

y : op.parameters ) ) &

op.isQuery = isQuery &

op.isStatic = isStatic &

op.scope = "entity" &

op.returnType = CType[type.typeId] )

For a static operation, the self parameter is omitted. Update operations are given a void result
type in the UML model data file model.txt (if they do not have a specific result type). To
support bx properties, a new attribute isQuery needs to be introduced to the C meta model class
COperation and set as above. To support lookup of COperations in the mapping of activities to
C, a new identity attribute opId of COperation is introduced (the Entity Merging design pattern).

If an inheritance exists from entity E to entity F , then an additional member of type struct
F* is inserted into the struct for E (F1.2.5):

Generalization::

CMember->exists( m | m.name = "super" &

CStruct->exists( sub | sub.ctypeId = specific.name &

m : sub.members & m.type = CPointerType[general.typeId] ) )

Only single inheritance is supported.
Care has been taken to ensure that the constraints for members, operations and generalisations

are invertible. They have the following inverses:

COperation::

scope = "entity" =>

Operation->exists( op | op.name = name.before("_") &

parameters->forAll( x | x.name /= "self" =>

Property->exists( y | y.name = x.name &
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y.type = Type[x.type.ctypeId] &

y : op.parameters ) ) &

op.isQuery = isQuery &

op.isStatic = isStatic &

op.type = Type[returnType.ctypeId] )

and:

CMember::

sub : CStruct & name = "super" & self : sub.members =>

Generalization->exists( g | g.specific.name = sub.ctypeId &

g.general = Entity[type.ctypeId] )

CStruct::

Entity->exists( e | e.name = name &

members->forAll( m |

Property->exists( p | p.name = m.name & p.isUnique = m.isKey &

p.type = Type[m.type.ctypeId] & p : e.ownedAttribute ) ) )

In total there are 37 rules and 34 operations in this subtransformation, and 42 metamodel classes.
Testing, inspection and formal arguments were used for validation and verification. NF1 was

achieved because all the transformation constraints are of type 1 (bounded loops), and recursions
in helper operations are bounded by the maximum inheritance depth in the source model. F2 was
ensured by checking the generated syntax against the C standard. F3 was ensured by checking that
SemC (p) ≡ SemUML(m) when p is generated from m. F4 is ensured by the use of the Auxiliary
Correspondence Model pattern, as is the bx requirement F5. NF2 was checked for input UML
models of different sizes and found to be satisfied (Table 5).

#classes #attributes per class Execution time

10 10 70ms
10 50 180ms
50 50 1.3s
50 100 4.3s
100 100 14.9s

Table 5: Execution times for uml2Ca on input models of different sizes

The estimated effort for this iteration is shown in Table 6.

Stage Effort (person days)

Req. Elicitation 2
Eval./Negotiation 1
Specification 12
Review/Validation 12
Implementation/ 10
Testing

Total 37

Table 6: Development effort for Iteration 2

The result of iterations 1 and 2 is a transformation that operates on the 3 UML-RSDS meta-
models (Figure 6, Figure 8 and Figure 10) as inputs, and on the C general metamodel (Figure 7)
as output. Statement and OCL data is implicitly copied from the source to the target model by
the model loading/model saving mechanisms, an example of the Implicit Copy MT pattern [9].

The completed prototype after iterations 1 and 2 has been implemented as a jar file uml2Ca.jar
in the UML-RSDS version 1.7 at https://nms.kcl.ac.uk/kevin.lano/uml2web/. This reads an input
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file model.txt, produced by the Save As Model option of UML-RSDS. The C code is written to a
file app.h:

java -jar uml2Ca/uml2Ca.jar

An intermediate model file cmodel.txt combining UML and C model elements is also produced,
for use as the input file for uml2Cb.

4 Iteration 3: Expression mapping

In this iteration, the detailed requirements for mapping OCL expressions to C were identified,
and this subtransformation, expressions2C , was specified and tested. Due to the large size of this
transformation, it was not possible to complete it within 1 month.

Figure 8 shows the UML-RSDS OCL metamodel, which is the source language for the subtrans-
formation. Figure 9 shows the corresponding C expression language abstract syntax. The OCL
and C expression languages are quite similar, however C lacks many operations on collections,
and these need to be provided as new library functions in the C library file ocl.h. An important
semantic issue is that a NULL collection must be treated as equal to an empty collection in the
generated code, to accord with the OCL semantics. New identity attributes expId and cexpId
are added to Expression and CExpression, respectively, to support the bx and traceability re-
quirements. An additional attribute variable : String is included in the BinaryExpression class to
represent iterator and let expression variables x in expressions s→forAll(x | P), and let x : T = e
in e1, etc. A further subclass, ConditionalExpression, is used to represent OCL conditional ex-
pressions. A ∗ − ∗ association context from Expression to Entity is used to record the context(s)
of use of the expression. Downcast expressions (where an object is used implicitly as an instance
of a subclass of the context) are not supported by this translator.

Figure 8: UML-RSDS OCL metamodel

The UML/OCL expressions were grouped into four categories: (i) mapping of basic expressions;
(ii) mapping of logical expressions; (iii) mapping of comparitor, numeric and string expressions;
(iv) mapping of collection expressions.
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Figure 9: C expression metamodel

4.1 Basic expressions

OCL basic expressions of OCL map to C expressions (requirement F1.3.1) according to Table 7.
Not included are objs.r for collection-valued r and objs, or operation applications objs.op(pars)

on collections: these can be expressed instead using forAll or collect .

4.2 Logical expressions

Table 8 shows the mapping of logical expressions and conditional/let expressions to C. These
mappings are grouped together as requirement F1.3.2.

The auxiliary operations fP are constructed to only have a single parameter, this means that
mapping of forAll, select, etc is only supported where the iterator/collect rhs expressions depend
on a single variable. The alternative (used in the UML-RSDS Java, C#, and C++ translators) is
to create a specialised iterator implementation for each different use of an iterator operation.

The auxiliary operations fP created for iterator expressions are not mapped back to UML via
the inverse transformation.

4.3 Comparator, numeric and string expressions

Table 9 lists the comparator operators and their mappings to C. These mappings are grouped as
requirement F1.3.3.

The introduced functions isIn, equalsSet , etc, are all defined in ocl.h, since they are not specific
to particular element types. The cast operator (T ) e is considered as a unary operator in C, with
argument e and type T .

Numeric operators for integers and real numbers are shown in Table 10. Three OCL operators:
ceil, round, floor, take a double value and return an int, in contrast to the corresponding C
functions. The interpretations of other mathematical functions use standard C library functions
from <math.h>. The mappings are grouped as requirement F1.3.4.

String operators are shown in Table 11. Strings are \0-terminated sequences of characters in
C. New functions subString, firstString, lastString, tailString, frontString, toLowerCase, toUpper-
Case, insertAtString, reverseString, subtractString, countString, startsWith, endsWith on strings
need to be introduced. They are defined in ocl.h. The mapping requirements for string expressions
are grouped as requirement F1.3.5.
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OCL expression e C representation e ′

self self as an operation parameter
super self→super
Variable v v
Data feature f of context E
with no objectRef getE f (self )
Data feature f
of E instance ex getE f (ex ′)
Operation call op(e1, ..., en) op E((struct E*) self, e1’, ..., en’)
or obj .op(e1, ..., en) of op E((struct E*) obj’, e1’, ..., en’)
instance scope op of E
Call op(e1, ..., en) of op E(e1’, ..., en’)
static entity scope op
Call op(e1, ..., en) of op(e1’, ..., en’)
application scope op
Instance-scope attribute f getAllE f (exs ′)
of E collection exs (duplicate values preserved)
Single-valued role r : F getAllE r(exs ′) defined by
of E collection exs (struct F ∗ ∗) collectE (exs ′, getE r)
E [v ] getEByPK(v’)
v single-valued
E [vs] getEByPKs(vs’)
vs collection-valued
E .allInstances entity type E e instances
x .oclIsUndefined() (x ′ == NULL)
x .oclAsType(T ) (T ′) x ′

value of enumerated type, value
numeric or string value
boolean true, false TRUE, FALSE

Table 7: Mapping scenarios for basic expressions

OCL expression e C expression e ′

A & B A’ && B’

A or B A’ || B’

not(A) !A’

E->exists(P) existsE(e instances,fP) fP evaluates P’
e->exists(P) existsE(e’,fP)

E->exists1(P) exists1E(e instances,fP) fP evaluates P’
e->exists1(P) exists1E(e’,fP)

E->forAll(P) forAllE(e instances,fP) fP evaluates P’
e->forAll(P) forAllE(e’,fP)

if e then e1 else e2 endif (e’)?(e1’):(e2’)

let v : T = e in e1 let i(e’) where
E1 of type T1 T1’ let i(T’ v) { return e1’; }

is defined as a new function

Table 8: Mapping scenarios for logical expressions
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OCL expression e C representation e ′

x : E isIn((void∗) x ′, (void ∗ ∗) e instances)
E entity type
x : s isIn((void∗) x ′, (void ∗ ∗) s ′)
s collection
s->includes(x) Same as x : s
s collection
x / : E !isIn((void∗) x ′, (void ∗ ∗) e instances)
E entity type
x / : s !isIn((void∗) x ′, (void ∗ ∗) s ′)
s collection
s->excludes(x) Same as x / : s
s collection
x = y x ′ == y ′

Numerics, booleans
Strings (strcmp(x ′, y ′) == 0)
objects x ′ == y ′

Sets equalsSet((void ∗ ∗) x ′, (void ∗ ∗) y ′)
Sequences equalsSequence((void ∗ ∗) x ′, (void ∗ ∗) y ′)
x < y x ′ < y ′

numerics
Strings (strcmp(x ′, y ′) < 0)
Similarly for >, <=, >=, >, <=, >=,
/ = ! =
s <: t containsAll((void ∗ ∗) t ′, (void ∗ ∗) s ′)
s, t collections
s / <: t !containsAll((void ∗ ∗) t ′, (void ∗ ∗) s ′)
s, t collections
t->includesAll(s) Same as s <: t
t->excludesAll(s) disjoint((void**) t’, (void**) s’)

Table 9: Mapping scenarios for comparator expressions

OCL expression e Representation in C

-x -x’
x + y x’ + y’
numbers
x - y x’ - y’
x * y x’ * y’
x / y x’ / y’
x mod y x’ % y’
x.sqr (x’ * x’)
x.sqrt sqrt(x’)
x.floor oclFloor(x’) defined as: ((int) floor(x’))
x.round oclRound(x’)
x.ceil oclCeil(x’) defined as: ((int) ceil(x’))
x.abs fabs(x’)
x.exp exp(x’)
x.log log(x’)
x.pow(y) pow(x’,y’)
x.sin, x.cos, x.tan sin(x’), cos(x’), tan(x’)
Integer.subrange(st,en) intSubrange(st’,en’)

Table 10: Mapping scenarios for numeric expressions
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Expression e C translation e ′

x + y concatenateStrings(x’, y’)
x->size() strlen(x’)
x->first() firstString(x’) defined as subString(x’,1,1)
x->front() frontString(x’) defined as subString(x’, 1, strlen(x’)-1)
x->last() lastString(x’) defined as subString(x’, strlen(x’), strlen(x’))
x->tail() tailString(x’) defined as subString(x’, 2, strlen(x’))
x.subrange(i,j) subString(x’, i’, j’)
x->toLowerCase() toLowerCase(x’)
x->toUpperCase() toUpperCase(x’)
s->indexOf(x) indexOfString(s’,x’)
s->hasPrefix(x) startsWith(s’,x’)
s->hasSuffix(x) endsWith(s’,x’)
s->characters() characters(s’)
s.insertAt(i,s1) insertAtString(s’,i’,s1’)
s->count(s1) countString(s1’, s’)
single character s1
s->reverse() reverseString(s’)
e->display() displayString(e’) defined as printf(”%s\n”, e’)

for String-valued e,
displayint(e’) defined as printf(”%d\n”, e’)
for integer e, similarly for long, double, boolean

s1 - s2 subtractString(s1’, s2’)
e->isInteger() isInteger(e’)

e->isReal() isReal(e’)

e->isLong() isLong(e’)

e->toInteger() atoi(e’)

e->toReal() atof(e’)

e->toLong() atol(e’)

Table 11: Mapping scenarios for string expressions
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4.4 Collection expressions

Table 12 shows the values and operators that apply to sets and sequences, and their C translations.
The requirements are grouped as F1.3.6.

For all operations such as appendE(col,x) involving a collection and an object, x will need to
be upcast to the element type of col, if it belongs to a subclass of this element type. A collection
x of strings can be sorted by supplying compareTo String (based on strcmp) as the comparison
function: treesort((void**) x’, compareTo String). Otherwise, a specifier must include a suitable
compareTo(other : E ) : int operation in E . For each sortedBy expression, a new function compare
is defined, if e is of a numeric or boolean type, compare(const void ∗ self , const void ∗ other)
returns e evaluated for (struct E∗) other subtracted from e evaluated for (struct E∗) self . For
String-valued e, strcmp is used, and for objects, the appropriate compareTo F operation.

A common form of OCL expression is the evaluation of a reduce operation (min, max, sum,
prd) applied to the result of a collect, eg.:

s→collect(e)→sum()

where e is double-valued. This is mapped to:

sumdouble((double∗) collectE (s ′, fe), length((void ∗ ∗) s ′))

because it is not possible to find the length of a collection of primitive values. Likewise, s.att .sum
is mapped to sumdouble(getAllE att(s ′), length((void ∗ ∗) s ′)). For a literal collection the length
can be directly determined and used.

A custom sorting algorithm, treesort , was implemented. This has signature

void** treesort(void* col[], int (*comp)(void*, void*))

and the translation of x→sort() is then: (rt) treesort((void**) x’, comp) for the appropriate result
type rt and comparator function comp. The algorithm uses an underlying data structure of binary
search trees, which can also be used to support the definition of maps (for caching and model input)
and for Bag and unordered Set collection types. These are defined in ocl.h.

For sorting of collections of instances of entity type E, the entity E must have a compareTo(other
: E) : int operation defined, this will become a function int compareTo E(struct E* self, struct E*
other) in C.

Table 13 shows the translation of select, collect and iterate operators, where s is a collection
of E objects. These mappings are grouped as requirement F1.3.7.

Due to the self-recursive structure of OCL expressions and UML activities, the expression and
activity mapping were specified using recursive operations to map an expression or activity based
upon the mappings of its subordinate parts.

An operation

mapExpression() : CExpression

is defined in each Expression subclass. This is an example of the Rule Inheritance pattern [16].
For each category of expression, the subparts of the expression are mapped to C first, and then

composed by a separate operation. For example:

BinaryExpression::

mapExpression() : CExpression

post:

result = mapBinaryExpression(

left.mapExpression(),

right.mapExpression())

UnaryExpression::

mapExpression() : CExpression

post:
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Expression e C translation e’

Set{} newEList()
Sequence{} newEList()
Set{x1, x2, ..., xn} insertE(... insertE(newEList(), x1’), ..., xn’)
Sequence{x1, x2, ..., xn} appendE(... appendE(newEList(), x1’), ..., xn’)

s->size() length((void**) s’)
s->including(x) insertE(s’,x’) or appendE(s’,x’)
s->excluding(x) removeE(s’,x’)
s - t removeAllE(s’,t’)
s->prepend(x) –
s->append(x) appendE(s’,x’)

s->count(x) count((void*) x’, (void**) s’)
s->indexOf(x) indexOf((void*) x’, (void**) s’)

x\/y unionE(x’,y’)
x/\y intersectionE(x’,y’)

x a y concatenateE(x’,y’)
x->union(y) unionE(x’,y’)
x->intersection(y) intersectionE(x’, y’)
x->unionAll(e) –
x->intersectAll(e) –
x->symmetricDifference(y) –

x->any() (x’)[0]
x->at(i) (x’)[i’-1]
x->subcollections() –

x->reverse() reverseE(x’)
x->front() frontE(x’) defined as subrangeE(x’,1,length((void**) x’)-1)
x->tail() tailE(x’) defined as subrangeE(x’,2,length((void**) x’))
x->first() firstE(x’) defined as x’[0]
x->last() lastE(x’) defined as x’[length((void**) x’)-1]

x->sort() (struct E**) treesort((void**) x’, compareTo E)
x of entity element type E
(char**) treesort((void**) x’, compareTo String)
x of String element type

x->sortedBy(e) (struct E**) treesort((void**) x’, comparee)
comparee defines e-order

x->sum() sumString(x’,n), sumint(x’,n), sumlong(x’,n), sumdouble(x’,n)
n is length of x

x->prd() prdint(x’,n), prdlong(x’,n), prddouble(x’,n)
n is length of x

Integer.Sum(a,b,x,e) intSum(a’,b’,fe), longSum(a’,b’,fe), doubleSum(a’,b’,fe)
fe computes e’(x’)

Integer.Prd(a,b,x,e) intPrd(a’,b’,fe), longPrd(a’,b’,fe), doublePrd(a’,b’,fe)

x->max() maxint(x’,n), maxlong(x’,n),
maxdouble(x’,n), maxString(x’,n)
n is length of x.

x->min() minint(x’,n), minlong(x’,n),
mindouble(x’,n), minString(x’,n)
n is length of x.

x->asSet() asSetE(x’)
x->asSequence() x’
s->isUnique(e) isUniqueE(s’,fe)
x->isDeleted() killE(x’)

Table 12: Scenarios for the translation of collection operators
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UML expression e C translation e’

s->select(P) selectE(s’, fP)
where E is the entity element type of s, fP evaluates P’:
unsigned char fP(struct E* self) { return P’; }

s->select( x | P ) as above, fP is:
unsigned char fP(struct E* x) { return P’; }

s->reject(P) rejectE(s’, fP), fP as for select
s->reject( x | P ) as above

s->collect(e) (et’*) collectE(s’, fe)
e of type et fe evaluates e’
s->collect( x | e ) as above

s->selectMaximals(e) –
s->selectMinimals(e) –

s->iterate(x; result : T = e | e1) iterateE et(s’,e’,fe1)
e1 of type et fe1 implements e1

Table 13: Scenarios for the mapping of selection, collection and iterate expressions

result = mapUnaryExpression(

argument.mapExpression())

BasicExpression::

mapExpression() : CExpression

post:

result = mapBasicExpression(

objectRef.mapExpression(),

arrayIndex.mapExpression(),

parameters.mapExpression())

CollectionExpression::

mapExpression() : CExpression

post:

result = mapCollectionExpression(expId,

elements.mapExpression())

For each category of expression, the mapping is further decomposed into cases, for example:

BasicExpression::

query mapBasicExpression(ob : Set(CExpression),

aind : Set(CExpression),

pars : Sequence(CExpression)) : CExpression

pre:

ob = CExpression[objectRef.expId] &

aind = CExpression[arrayIndex.expId] &

pars = CExpression[parameters.expId]

post:

(umlKind = value =>

result = mapValueExpression(ob,aind,pars)) &

(umlKind = variable =>

result = mapVariableExpression(ob,aind,pars)) &

(umlKind = attribute =>

result = mapAttributeExpression(ob,aind,pars)) &

(umlKind = role =>

result = mapRoleExpression(ob,aind,pars)) &

(umlKind = operation =>

result = mapOperationExpression(ob,aind,pars)) &

(umlKind = classid =>
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result = mapClassExpression(ob,aind,pars)) &

(umlKind = function =>

result = mapFunctionExpression(ob,aind,pars))

This style of specification involves the use of update operations that also return results (or query
operations that create objects and have side-effects), which is considered undesirable. Such oper-
ations cannot be translated into the B formalism for verification [15]. The operation precondition
asserts that the parameters correspond to the sub-parts of the basic expression. The kind attribute
of CExpression records the origin of the C expression. This enables an inverse operation to be
defined, eg.:

CBasicExpression::

query mapCBasicExpression(ob : Set(Expression),

aind : Set(Expression),

pars : Sequence(Expression)) : BasicExpression

pre:

ob = Expression[reference.cexpId] &

aind = Expression[arrayIndex.cexpId] &

pars = Expression[parameters.cexpId]

post:

(kind = "value" =>

result = mapCValueExpression(ob,aind,pars)) &

(kind = "variable" =>

result = mapCVariableExpression(ob,aind,pars)) &

(kind = "attribute" =>

result = mapCAttributeExpression(ob,aind,pars)) &

(kind = "role" =>

result = mapCRoleExpression(ob,aind,pars)) &

(kind = "operation" =>

result = mapCOperationExpression(ob,aind,pars)) &

(kind = "classid" =>

result = mapCClassExpression(ob,aind,pars)) &

(kind = "function" =>

result = mapCFunctionExpression(ob,aind,pars))

An alternative style of specification would be to use the Map Objects Before Links pattern [9],
however this would involve separation of the mapping of expression instances and the mapping of
relation instances: attribute values of target objects would be set in separate rules to the setting
of their associations.

Some specific cases for mapping different forms of basic expression are as follows:

query mapVariableExpression(obs : Set(CExpression),

aind : Set(CExpression),

pars : Sequence(CExpression)) : CBasicExpression

post:

CBasicExpression->exists( c | c.cexpId = expId & c.kind = "variable" &

c.data = data &

c.arrayIndex = aind &

c.reference = obs &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] & result = c)

query mapAttributeExpression(obs : Set(CExpression),

aind : Set(CExpression),

pars : Sequence(CExpression)) : CBasicExpression

post:

(context.size = 0 & objectRef.size = 0 =>

CBasicExpression->exists( c | c.cexpId = expId & c.kind = "attribute" &

c.data = data &
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c.isStatic = true &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

c.arrayIndex = aind &

result = c ) ) &

(context.size > 0 & objectRef.size = 0 =>

CBasicExpression->exists( c | c.cexpId = expId & c.kind = "attribute" &

c.data = "get" + context.any.name + "_" + data &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

c.arrayIndex = aind &

CBasicExpression->exists( s | s.data = "self" &

s.kind = "variable" &

s.cexpId = expId + "_self" &

s.type = CType[context.any.typeId] &

s.elementType = s.type &

c.parameters = Sequence{ s } & result = c ) ) &

(objectRef.size > 0 & objectRef.any.type : CollectionType =>

CBasicExpression->exists( c | c.cexpId = expId & c.kind = "attribute" &

c.data = "getAll" + objectRef.any.elementType.name + "_" + data &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

c.parameters = obs &

c.arrayIndex = aind &

result = c ) ) &

(objectRef.size > 0 & objectRef.any.type /: CollectionType =>

CBasicExpression->exists( c | c.cexpId = expId & c.kind = "attribute" &

c.data = "get" + objectRef.any.elementType.name + "_" + data &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

c.parameters = obs &

c.arrayIndex = aind &

result = c ) )

Note that context should normally be set for attributes and roles, so that the context entity using
the feature can be accessed (this entity may be a subclass of the owner of the feature). The
mapping operations can be inverted clause-by-clause. This is possible since the target expression
encodes all necessary information to derive the source expression. For example, an assignment

c.parameters = Sequence{s}a pars inverts to pars = c.parameters.tail & s = c.parameters.first .
Testing of these operations revealed some errors regarding the metamodels, eg., that elementType

should be of 1 multiplicity, not 0..1, and that any is needed with objectRef because this is of 0..1
multiplicity. name is needed for the copies of Type and CType in the uml2Cb metamodel. The
generation of model.txt by the UML-RSDS tools needed to be adjusted in several cases to ensure
that appropriate information was available for UML2C.

The correspondence of OCL and C operators is given in Table 14.
Various convenience operations were introduced during design, such as:

Expression::

createCBinOpCall(id : String, name : String, le : CExpression,

re: CExpression) : CBasicExpression

post:

CBasicExpression->exists( cbe |

cbe.cexpId = id & cbe.data = name &

cbe.parameters = Sequence{ le, re } &

cbe.kind = "operation" &

cbe.type = CType[type.typeId] &

cbe.elementType = CType[elementType.typeId] & result = cbe )
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UML operator C operator Condition

+, - (unary) +, - (unary)
not !

+, - (binary) +, - (binary) numeric arguments
∗, /, mod ∗, /, %
and, or &&, ∥
= == numeric arguments
<>, / = != numeric arguments
<, <= <, <= numeric arguments
>=, > >=, > numeric arguments

Table 14: Operator correspondence between UML and C

Expression::

createCUnaryOpCall(id : String, name : String, arg : CExpression) : CBasicExpression

post:

CBasicExpression->exists( cbe |

cbe.cexpId = id &

cbe.data = name &

cbe.parameters = Sequence{ arg } &

cbe.kind = "operation" &

cbe.type = CType[type.typeId] &

cbe.elementType = CType[elementType.typeId] & result = cbe )

These are used to create C representations of binary and unary expressions as operation calls.
They are an application of the MT pattern Factor out Duplicated Expression Evaluations [9].

Quantifier, select/reject and collect expressions are mapped by:

query mapIteratorExpression(op : String, le : CExpression, re : CExpression) : CExpression

post:

result = createCBinOpCall(expId, op + left.elementType.name, le,

CExpression.defineCOpRef(CProgram.allInstances.any.defineCOp(re,

variable, le.elementType) ) )

query mapCollectExpression(le : CExpression, re : CExpression) : CExpression

post:

result = createCBinOpCall(expId, "collect" + left.elementType.name, le,

CExpression.defineCOpRefCast(CProgram.allInstances.any.defineCOp(re,

variable, le.elementType), "void* (*)(" + le.elementType + ")" ) )

These create new auxiliary operations that evaluate the predicate of the iterator/collect (the RHS
argument), add it to the program, and create a reference to this operation as an argument for the
C operation that evaluates the iterator/collect. For collect, the function reference must be cast
to the function pointer type void* (*)(struct E*) where the LHS has element type E. As noted
above, there is only one parameter variable of the auxiliary operation.

The definition of binary expression mapping is:

BinaryExpression::

query mapBinaryExpression(lexp : CExpression,

rexp : CExpression) : CBinaryExpression

pre:

lexp = CExpression[left.expId] &

rexp = CExpression[right.expId]

post:

(operator = "+" =>

result = mapAddExpression(lexp, rexp)) &

(operator = "-" =>

result = mapSubtractExpression(lexp, rexp)) &
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(operator = "=" =>

result = mapEqualityExpression(lexp,rexp)) &

(operator = "/=" =>

result = mapInequalityExpression(lexp,rexp)) &

(Expression.isComparitor(operator) =>

result = mapComparitorExpression(lexp,rexp)) &

(Expression.isInclusion(operator) =>

result = mapInclusionExpression(lexp,rexp)) &

(Expression.isExclusion(operator) =>

result = mapExclusionExpression(lexp,rexp)) &

(Expression.isIteratorOp(operator) =>

result = mapIteratorExpression(operator.tail.tail, lexp, rexp)) &

(operator = "->collect" =>

result = Expression.cast(rexp.type + "*", mapCollectExpression(lexp, rexp))) &

(operator = "->sortedBy" =>

result = mapSortedByExpression(lexp,rexp)) &

(left.type.name = "String" & Expression.isStringOp(operator) =>

result = mapStringExpression(lexp,rexp)) &

((left.type.name = "Set" or left.type.name = "Sequence") &

Expression.isCollectionOp(operator) =>

result = mapCollectionExpression(lexp,rexp)) &

(true =>

CBinaryExpression->exists( c | c.cexpId = expId &

c.operator = Expression.cop(operator) &

c.left = lexp & c.right = rexp &

c.needsBracket = needsBracket &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

result = c ) )

A string binary op is one of→indexOf , →count , →hasPrefix , →hasSuffix . An iterator operator
is one of →forAll , →exists, →exists1, →select , →reject .

A collection binary op is one of: →including , →excluding , →append , →indexOf , →count ,

→union, →intersection, →at , a, →isUnique, →sortedBy .
Unary expressions are mapped as follows:

UnaryExpression::

query mapUnaryExpression(arg : CExpression) : CExpression

pre:

arg = CExpression[argument.expId]

post:

(operator.size > 2 & Expression.isCfunction1(operator.tail.tail) =>

CBasicExpression->exists( c | c.cexpId = expId &

c.data = Expression.cfunctionName(operator.tail.tail) &

c.kind = "function" &

c.parameters = Sequence{ arg } &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] & result = c) ) &

(operator = "->sort" => result = mapSortExpression(arg)) &

(Expression.isReduceOp(operator) =>

result = mapReduceExpression(arg)) &

(argument.type.name = "String" & Expression.isUnaryStringOp(operator) =>

result = mapStringExpression(arg)) &

(operator = "->display" =>

result = createCUnaryOpCall(expId, "display" + argument.type, arg)) &

((argument.type.name = "Set" or argument.type.name = "Sequence") &

Expression.isUnaryCollectionOp(operator) =>

result = mapCollectionExpression(arg)) &

(true =>
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CUnaryExpression->exists( c | c.cexpId = expId &

c.operator = Expression.cop(operator) &

c.argument = arg &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

result = c ) )

isCFunction1 is true if the function name is one of: sqrt, exp, log, sin, cos, tan, pow, log10, cbrt,
tanh, cosh, sinh, asin, acos, atan.

A reduce operator is one of →min, →max , →sum, →prd . These expressions are mapped by:

UnaryExpression::

query mapReduceExpression(arg : CExpression) : CExpression

post:

(operator[1] = "-" & operator[2] = ">" =>

result = createCBinOpCall(expId,

operator.tail.tail + argument.elementType.name,

arg, argument.clength(arg)) ) &

(true =>

result = createCBinOpCall(expId, operator + argument.elementType.name,

arg, argument.clength(arg)) )

clength(arg) by default returns length((void ∗ ∗) arg), but for s→collect on a collection, and for
attribute applications s.att to a collection, it returns the size of s ′. For literal sequences the size
can be directly evaluated, and for Integer .subrange(a, b) it is b′ − a ′ + 1.

A (unary) collection operator is one of →size, →any , →reverse, →front , →last , →tail , →first ,
→sort , →asSet , →asSequence.

During this iteration, a new functional requirement F1.2.6 to map static operations to C was
added, which involved reworking the uml2Ca transformation. In particular, the Expression and
CExpression and COperation classes all need an additional boolean attribute isStatic. This effort
is included in the budget of iteration 3.

F1.2.6 Operation op(p : P) : T of E C operation
(static) T’ op E(P’ p)

with scope = “entity”

Table 15: Additional class diagram mapping requirement F1.2.6

There are 92 operations and 33 transformation rules for this use case. Testing and inspec-
tion were used for validation and verification. NF1 was achieved because all the transformation
constraints are of type 1 (bounded loops), and recursions in operations are bounded by the maxi-
mum depth of input model expressions as abstract syntax trees. F2 was ensured by checking the
generated syntax against the C standard. F3 was ensured by checking SemC (p) ≡ SemUML(m)
when p is generated from m. F4 is ensured by the use of the Auxiliary Correspondence Model
and Recursive Descent patterns, as is the bx requirement F5. NF2 was checked for the uml2Cb
release and found to be satisfied (Table 19).

The estimated effort for this iteration is shown in Table 16.
Considerable effort was spent on debugging, with most of the problems traced to the input

model data generated from UML models, or (less often) to errors in the preceding uml2Ca trans-
formation. Errors in the uml2Cb transformation itself were usually quickly traced and corrected,
and were for the most part minor, eg., incorrectly treating a 0..1-multiplicity role as if it were
1-multiplicity, etc.
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Stage Effort (person days)

Req. Elicitation 10
Eval./Negotiation 2
Specification 30
Review/Validation 30
Implementation/ 20
Testing

Total 92

Table 16: Development effort for Iteration 3

5 Iteration 4: Activities mapping

In this iteration, the mapping of UML-RSDS activities to C statements was specified by a
subtransformation statements2C . Figure 10 shows the input activity language. Additionally,
CreationStatements have a type and elementType. UML-RSDS activities correspond closely to
the statements of programming languages, including C. Figure 11 shows the metamodel for C
statements. DeclarationStatements have a type and elementType, and for IfStatement , elsePart
is optional, as for UML-RSDS ConditionalStatement activities. Table 17 shows the main cases of
the mapping of UML activities to C statements. Calls objs.op(pars) of instance operations using
collections objs of objects are converted to bounded loop statements during design generation so
they do not need to be considered here. OCL collections and strings are values, and hence should
be copied when assigned (scenario F1.4.2).

Figure 10: UML-RSDS activity metamodel

New identity attributes statId and cstatId are added to Statement and CStatement , respec-
tively, to support the bx and traceability requirements. A similar recursive descent style as for
expressions2C is used for the statement mapping specification. An operation

mapStatement() : CStatement

is defined in each Statement subclass.
For basic statements, this is defined as follows:

AssignStatement::
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Figure 11: C statement metamodel

Requirement UML activity st C statement st’

F1.4.1 Creation statement x : T T’ x = defaultT’;
defaultT’ is default value of T’

F1.4.2 Assign statement v := e v’ = e’;
strcpy(v’, e’); for String variable v

Assign statement v : T := e T’ v’ = e’;
Assign statement obj.f := e setE f(obj’, e’)
obj of class E

F1.4.3 Sequence statement st1 ; ... ; stn st1’ ... stn’

F1.4.4 Conditional statement
if e then st1 else st2 if (e’) { st1’ } else { st2’ }
Conditional statement if e then st1 if (e’) { st1’ }

F1.4.5 Return statement return e return e’;
Return statement return return;

F1.4.6 Break statement break break;
Continue statement continue continue;

F1.4.7 Bounded loop for (x : e) do st int l ind = 0;
on object collection e of entity int l size = length((void**) e’);
element type E for ( ; l ind < l size; l ind++)

{ struct E* x = e’[l ind]; st’ }
New variables l ind, l size

F1.4.8 Unbounded loop while e do st while (e’) { st’ }
F1.4.9 Operation call ex.op(pars) op E((struct E*) ex’,pars’)

on single object ex of E

Table 17: Scenarios for mapping of statements to C
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mapStatement() : CStatement

post:

assign = left.mapAssignment(self, right.mapExpression()) &

(type.size = 0 => result = assign) &

(type.size > 0 =>

assign.type = CType[type.typeId] & result = assign)

BreakStatement::

mapStatement() : CStatement

post:

CBreakStatement->exists( ca | ca.cstatId = statId & result = ca )

OperationCallStatement::

mapStatement() : CStatement

post:

OpCallStatement->exists( ca | ca.cstatId = statId &

ca.callExp = callExp.mapExpression() &

ca.assignsTo = assignsTo & result = ca )

CreationStatement::

mapStatement() : CStatement

post:

DeclarationStatement->exists( ds | ds.cstatId = statId &

ds.createsInstanceOf = createsInstanceOf &

ds.assignsTo = assignsTo &

ds.type = CType[type.typeId] &

ds.elementType = CType[elementType.typeId] & result = ds)

For each category of composite statement, the subparts of the statement are mapped to C first,
and then composed by a separate operation. For example:

SequenceStatement::

mapStatement() : CStatement

post:

result = mapSequenceStatement(

statements.mapStatement())

mapSequenceStatement(css : Sequence(CStatement)) : CStatement

pre:

css = CStatement[statements.statId]

post:

CSequenceStatement->exists( cs | cs.cstatId = statId &

cs.kind = kind & cs.statements = css &

result = cs )

ConditionalStatement::

mapStatement() : CStatement

post:

result = mapConditionalStatement(

ifPart.mapStatement(), elsePart.mapStatement())

mapConditionalStatement(ifP : CStatement, elseP : Set(CStatement)) : CStatement

pre:

ifP = CStatement[ifPart.statId] &

elseP = CStatement[elsePart.statId]

post:
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IfStatement->exists( istat | istat.cstatId = statId &

istat.ifPart = ifP &

istat.elsePart = elseP &

istat.test = test.mapExpression() &

result = istat )

UnboundedLoopStatement::

mapStatement() : CStatement

post:

result = mapUnboundedLoopStatement(

body.mapStatement())

mapUnboundedLoopStatement(bdy : CStatement) : CStatement

pre:

bdy = CStatement[body.statId]

post:

WhileLoop->exists( lp | lp.cstatId = statId &

lp.body = bdy & lp.test = test.mapExpression() &

result = lp )

BoundedLoopStatement::

mapStatement() : CStatement

post:

result = mapBoundedLoopStatement(

body.mapStatement())

mapBoundedLoopStatement(bdy : CStatement) : CStatement

pre:

bdy = CStatement[body.statId]

post:

ForLoop->exists( lp | lp.cstatId = statId &

lp.body = bdy & lp.test = test.mapExpression() &

lp.loopVar = loopVar.mapExpression() &

lp.loopRange = loopRange.mapExpression() &

result = lp )

The definitions of these mappings were revised and simplified during the specification stage, prior
to implementation.

As with the mappings of expressions, these mappings can be directly inverted, for example:

CSequenceStatement::

mapCStatement() : Statement

post:

result = mapCSequenceStatement(

statements.mapCStatement())

mapCSequenceStatement(css : Sequence(Statement)) : Statement

pre:

css = Statement[statements.cstatId]

post:

SequenceStatement->exists( cs | cs.statId = cstatId &

cs.kind = kind & cs.statements = css &

result = cs )

IfStatement::

mapCStatement() : Statement

post:

result = mapIfStatement(

ifPart.mapCStatement(), elsePart.mapCStatement())
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mapIfStatement(ifP : Statement, elseP : Set(Statement)) : Statement

pre:

ifP = Statement[ifPart.cstatId] &

elseP = Statement[elsePart.cstatId]

post:

ConditionalStatement->exists( istat | istat.statId = cstatId &

istat.ifPart = ifP &

istat.elsePart = elseP &

istat.test = test.mapCExpression() &

result = istat )

and likewise for other composite statement cases.
The operation mapExpression is invoked from mapStatement in the cases of basic and com-

posite statements which involve expressions. For example:

ReturnStatement::

mapStatement() : CStatement

post:

CReturnStatement->exists( r |

r.cstatId = statId &

r.returnValue = returnValue.mapExpression() &

result = r)

This can be inverted using mapCExpression to convert the value expressions from C to UML.
Statements are printed by toString operations, eg.:

DeclarationStatement::

query toString() : String

post:

(createsInstanceOf = "String" =>

result = type + " " + assignsTo + " = \"\"") &

(type : CPrimitiveType =>

result = type + " " + assignsTo + " = 0;") &

(true =>

result = type + " " + assignsTo + " = NULL;")

IfStatement::

query toString() : String

post:

(elsePart.size = 0 =>

result = "if (" + test + ")\n { " +

ifPart + " }") &

(elsePart.size > 0 =>

result = "if (" + test + ")\n { " +

ifPart + " }\n else { " + elsePart.any + " }")

It was identified that the elsePart association ends should have 0..1 multiplicities to include
the cases of If statements without Else clauses. Likewise, the returnValue of a Return statement
should be optional. There are 28 operations and 4 rules for this iteration.

The estimated effort for this iteration is shown in Table 18.

6 Iteration 5: Use case mapping

In this iteration, the mapping of UML use cases was specified by a transformation usecases2C .
It was agreed during evaluation and negotiation that use case attributes and operations would be
excluded from the mapping, since these are non-essential.
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Stage Effort (person days)

Req. Elicitation 2
Eval./Negotiation 1
Specification 6
Review/Validation 6
Implementation/ 4
Testing

Total 19

Table 18: Development effort for Iteration 4

F1.5.1: A use case uc is mapped to a static C operation with “application” scope, and with
parameters corresponding to those of uc. Its code is given by the C translation of the activity
classifierBehaviour of uc.

F1.5.2: Included use cases are also mapped to operations, and invoked from the including use
case. Use case extension is not represented, because this is considered as a purely specification-level
composition mechanism.

F1.5.3: Operation activities are mapped to C code for the corresponding COperation.
F1.5.1 and F1.5.2 are formalised as:

UseCase::

COperation->exists( cop | cop.name = name & cop.scope = "application" &

cop.isQuery = false &

cop.isStatic = true &

cop.code = classifierBehaviour.mapStatement() &

parameters->forAll( x | CVariable->exists( y | y.name = x.name &

y.kind = "parameter" &

y.type = CType[x.type.typeId] &

y : cop.parameters ) ) &

cop.returnType = CType[returnType.typeId] )

Similarly for the activities of UML operations (F1.5.3):

Operation::

COperation->exists( cop | cop.opId = name + "_" + owner.name &

cop.code = activity.mapStatement() )

The other features of the COperation in this case are set by the iteration 2 mapping.
All auxiliary scope operations are printed before all entity operations, and these are printed

before all application operations:

COperation::

scope = "auxiliary" => self->display()

COperation::

scope = "entity" => self->display()

COperation::

scope = "application" => self->display()

NF1 was achieved because all the transformation constraints are of type 1 (bounded loops).
F2 was ensured by checking the generated syntax against the C standard. F3 was ensured by
checking the equivalence of the semantics of the UML and C models. F4 is ensured by the use
of the Auxiliary Correspondence Model and Recursive Descent patterns, as is the bx requirement
F5. NF2 was checked for the uml2Cb release and found to be satisfied (Table 19).

35



#classes #attributes Execution time
10 10 90ms
10 50 170ms
50 50 591ms
50 100 881ms
100 100 1.7s

Table 19: Execution times for uml2Cb

The result of iterations 3, 4 and 5 is a transformation that operates on the 3 UML-RSDS
metamodels (a subset of Figure 6, and Figures 8 and 10) as inputs, and on a subset of the C
general metamodel (Figure 7) and on Figures 9, 11 as outputs. Uml2Cb operates on 49 metamodel
classes. The completed prototype for iterations 3, 4, 5 is uml2Cb.jar. It reads an intermediate
model file cmodel.txt produced by uml2Ca.jar and writes the generated C program to a file app.c.
NF5 is achieved because uml2Ca and uml2Cb can be invoked from the main UML-RSDS interface.

There are 6 rules in this iteration. Table 20 shows the resources used by this iteration.

Stage Effort (person days)

Req. Elicitation 1
Eval./Negotiation 0
Specification 1
Review/Validation 1
Implementation/ 5
Testing

Total 8

Table 20: Development effort for Iteration 5

7 Evaluation

In this section we evaluate the outcomes of the development, the effectiveness of UML-RSDS for
the development, and the agile MDD approach that we have used. We compare the approach to
the agile traditional coding approach used for other UML-RSDS code generators.

7.1 Comparison with requirements

Table 21 compares the functional and non-functional requirements and the actual achieved results.
In some cases it is possible to prove by the construction of the transformation that some properties
hold (termination and confluence). For syntactic and semantic correctness we can give rigorous
arguments based on considering each mapping rule and checking that it produces valid C with the
same semantics as its input. For some aspects, such as numeric computations, semantic correctness
is only relative to the same definitions of numeric types being used in the input UML and output
C: the specifier needs to use in their specification the same data type sizes (eg., 16 bit int type)
as the target code platform. For dynamic memory allocation, we assume that malloc and calloc
always succeed. Select and other iterator expressions are restricted to depend on only one variable.
Only collections containing strings or entity instances can be explicitly constructed.

In order to test NF6 and NF7 we carried out a number of tests on different UML specifications.
All tests were carried out on a standard Windows 7 laptop with Intel i3 2.53GHz processor using
25% of processing capacity. The first test was a small-scale application involving a fixed-point
computation of the maximum-value node in a graph of nodes. This application has one entity
type A, with an attribute x : int and a self-association neighbours : A → Sequence(A). There is a
use case maxnode with the postcondition
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Requirement Priority Achievement

NF1: Termination High Proved
NF10: Development time High Achieved
F2: Syntactic correctness High Rigorous argument and testing
F3: Semantic preservation High Rigorous argument and testing
F4: Traceability High Achieved
F5: Bidirectionality Medium Partly achieved
NF2: Transformation efficiency Medium Achieved
NF3: Transformation modularity Medium Achieved
NF5: Usability Medium Achieved
NF6: Efficient code Medium Partly achieved
NF7: Compact code Medium Partly achieved
F6: Confluence Low Proved
NF4: Flexibility Low Not achieved

Table 21: Achievement of requirements

A::

n : neighbours & n.x > x@pre => x = n.x

This updates a node to have the maximum x value of its neighbours. Because this constraint reads
and writes A :: x , a fixed-point design is generated by the UML-RSDS tools. It is an example of
object-oriented specification with intensive use of navigation from object to object.

The generated C code of the use case and its auxiliary functions is:

void maxnode1(struct A* self, struct A* n)

{ setA_x(self, getA_x(n)); }

unsigned char maxnode1test(struct A* self, struct A* n)

{ if (getA_x(n) > getA_x(self))

{ return TRUE; }

return FALSE;

}

unsigned char maxnode1search(void)

{ int ind_boundedloopstatement_80 = 0;

int size_boundedloopstatement_80 = oclSize((void**) a_instances);

for ( ; ind_boundedloopstatement_80 < size_boundedloopstatement_80;

ind_boundedloopstatement_80++)

{ struct A* ax = (a_instances)[ind_boundedloopstatement_80];

int ind_boundedloopstatement_85 = 0;

int size_boundedloopstatement_85 = oclSize((void**) getA_neighbours(ax));

for ( ; ind_boundedloopstatement_85 < size_boundedloopstatement_85;

ind_boundedloopstatement_85++)

{ struct A* n = (getA_neighbours(ax))[ind_boundedloopstatement_85];

if (maxnode1test((struct A*) ax, n))

{ maxnode1((struct A*) ax, n);

return TRUE;

}

}

}

return FALSE;

}

void maxnode(void)

{ unsigned char maxnode1_running = TRUE;
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while (maxnode1_running)

{ maxnode1_running = maxnode1search(); }

}

Table 22 compares the code size (for the complete applications, including OCL library code)
and the efficiency of the C code with the Java code produced by the UML-RSDS Java code
generator. The execution time figures are for the lcc compiler, which are somewhat lower than
the figures for Visual Studio. These show that code size is halved by using C, and that efficiency
is improved.

C version Java version

Code size 17Kb 35Kb
Execution time
A.size = 20 0 30ms
A.size = 50 15ms 70ms
A.size = 100 240ms 330ms
A.size = 200 1750ms 2500ms

Table 22: Generated C code versus Java code, case 1

In a second case, the efficiency test from [8] was used. This computes prime numbers in a given
range using a double iteration. Table 23 compares the generated code in Java, C, C# and C++
on this case.

Testing primes up to C version Java version C# version C++ version
10000 5ms 7ms 3ms 8ms
20000 9ms 15ms 8ms 16ms
50000 22ms 47ms 27ms 31ms
100000 47ms 63ms 54ms 62ms
200000 109ms 125ms 274ms 112ms
500000 143ms 374ms 472ms 405ms

Table 23: Generated C code versus Java, C#, C++ code, case 2

The main causes of inefficiency in the C code are (i) repeated linear traversals of collections
to calculate the sizes of collections; (ii) the cost of allocating and reallocating large contiguous
blocks of memory for array-based collections. An alternative array collection representation could
use the first element of an array to store the collection length. This also has the advantage that
C and OCL indexing of collections would coincide. However it would hinder the compatibility
of the generated code with conventional C code. For (unordered) sets and bags non-contiguous
memory blocks can be used, and this reduces the memory allocation costs. In cases where a
computed collection value e is immediately assigned to a collection-valued feature: obj .r = e,
there is no need to allocate new memory for e, instead obj .r can be updated in-place. In cases
of sum, prd applied to the result of a collect , an Integer .Sum or Integer .Prd expression could be
used instead: objs→collect(e)→sum() for sequence objs is the same as

Integer .Sum(1, objs.size, i , e(objs[i ]))

This avoids the allocation of memory space for the collect result.

7.2 Comparison with manual transformation development

Several code generators have previously been developed for UML-RSDS: for Java 4, Java 6, Java 7,
C# and C++. Each of these was developed using an agile development process but with manual
coding in Java. Table 24 shows the approximate effort in person-months expended for each of
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Java 4 Java 6 Java 7 C# C++

Req. Analysis 6 1 2 3 6
Coding 12 3 4 4 6
Testing 6 1 1 1 2
Maintenance 6 1 1 1 3

Total 30 6 8 9 17

Table 24: Development effort for previous code generators (person months)

these to date. The generators for Java 6, 7 and C# used very similar strategies and extensively
reused the code of the Java 4 version generator.

The best comparison with the C code generator is perhaps the C++ generator, which in-
volved considerable background research into the semantics, language and libraries of C++, and
significant revision of the existing Java-oriented code generator. Likewise, the C code generator
involved substantial new research work on the code generation stategy, in addition to the technical
challenge of implementing this strategy.

Summarising Tables 3, 6, 16, 18, 20, we obtain an overall estimate for the C code generator in
Table 25.

Stage Effort (person days)

Req. Elicitation 17
Eval./Negotiation 5
Specification 56
Review/Validation 57
Implementation/ 49
Testing

Total 184

Table 25: Overall development effort for C code generator

Stage C++ generator UML2C

Req. Analysis/Specification 6 4.5
Design/Coding 6 1
Testing 2 0.5
Maintenance 3 0

Total 17 6

Table 26: Development effort of C++ and C code generators

This amounts to 4.5 person months for requirements analysis/specification activities, compared
to 6 months for the manually-developed C++ generator. 49 days were spent on implementation
and testing, compared to 8 months for the C++ generator (Table 26). A major factor in this
difference is the simpler and more concise transformation specification of the C code generator
(expressed in UML-RSDS) compared to the Java code of the C++ code generator. Not only is
the UML-RSDS specification 4 times shorter than the Java code, but the latter is scattered over
multiple source files (eg., Attribute.java, Association.java, Entity.java, etc), making debugging and
maintenance more complex compared to the C translator, which is defined in 2 specification files.
The C++ generator does not construct a C++ language model, instead language mapping and
text production are mixed together, resulting in complex and duplicated processing. In total, the
core code of the UML-RSDS tools is 90,500 lines of Java code, of which approximately 20% (18,100
lines) is the C++ code generator. In contrast the UML2C specification is 2,200 (uml2Ca) and
2,700 (uml2Cb) lines, in total 4,900 lines. The OCL specification of UML2C is highly declarative
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and corresponds directly to the informal requirements, hence it is easier to understand and modify
compared to a programming language implementation. In iterations 3 and 4 the specification style
is less purely declarative than in iterations 1, 2 and 5, but instead is in a functional programming
style. It was found that this was also more concise and easier to understand and change than the
imperative Java coding of the C++ code generator transformation.

Whilst UML2C is explicitly divided into 5 main stages, each subdivided into model to model
and model to text modules, the C++ generator has a monolithic structure. Only two design
patterns (Iterator and Visitor) are used in the C++ generator, whilst 13 are used to organise
UML2C (Section 7.4).

Table 27 summarises the differences in software quality measures between the C++ generator
and UML2C.

Measure C++ generator UML2C

Size (LOC) 18,100 4,900
Abstraction level Low (code) High (specification)
Software architecture Partial Detailed
Modularity Low (1 module) High (10 modules)
Cohesion Low High
Coupling Low Low
Design patterns 2 13

Table 27: Software quality measures of C++ and C code generators

We can also compare the level of design flaws or technical debt in the C++ translator and in
UML2C. For the C++ translator the data has been calculated using the PMD tool (https://pmd.github.io).
For UML2C we have used the following measures of technical debt:

ETS: Excessive transformation size (total complexity > 1000, where complexity is the sum of the
number of operator and identifier occurrences)

ENR: Excessive number of rules (nrules > 10)

ENO: Excessive number of helpers/operations (nops > 10)

ERS: Excessive rule size (complexity > 100)

EHS: Excessive helper size (complexity > 100)

EPL: Excessive parameter list (for transformation, rules, and helpers): > 10 parameters including
auxiliary rule variables

CC: Cyclomatic complexity (of rule logic or of procedural code) (> 10).

Measures of fan-out, duplicate code and coupling between operations are not measured by
PMD, so are omitted. There are substantial numbers of code clones and inter-operation depen-
dencies in the C++ code generator Java code, however. ETS is taken to be the same as Excessive
Class Size in PMD. The threshold values used in PMD are: ETS 1000 LOC; EHS 100 LOC; EPL
10 parameters; CC 10; ENO 10 per class. Table 28 compares the TD figures for UML2C and the
C++ generator. For the latter, the figures for EHS/ERS, CC and EPL are produced by dividing
the total numbers of faulty operations in UML-RSDS by 5. It can be seen that the figures for
UML2C are generally lower than for the C++ translator.

7.3 Effectiveness of agile MDD

The benefits of effort reduction described above are mainly due to the use of specifications instead
of code, and to the use of executable modelling. The use of a systematic requirements engineering
process also helped to capture and make explicit all requirements, avoiding ambiguity over the
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Transformation ETS EHS + ERS CC ENO + ENR EPL

C++ generator 5 (classes) 16.6 110.6 28 (classes) 0.4
UML2C 2 (transformations) 13 62 4 (transformations) 0

Table 28: C++ translator versus UML2C technical debt

development tasks. The decomposition of the transformation into semi-independent phases formed
a natural basis for the definition of the top-level work items in the product backlog, and this in turn
led to the definition of iterations. The use of short iterations and task backlogs enabled incremental
development of the translator and helped organise the development. Partial specifications were
defined for each separate iteration of the system, and incrementally refined. Refactoring was
extensively used to improve the specification, in particular the removal of duplicated functionality.
The agile emphasis on simplicity helped to reduce the specification complexity: in particular only
class diagrams and OCL constraints are used to define the translator, without activities or other
UML models. Overall, we consider the combination of agile and MDD to be effective in improving
system quality and reducing development time. Further techniques, such as model-based testing
and pair modelling, will be investigated in future work. The work on this transformation has
helped to identify improvements in the existing UML-RSDS code generator transformations.

7.4 Transformation design patterns

We found that several MT design patterns from [9], [16] were useful in structuring and simplifying
the code generator:

• Phased Construction: Non-collection types are mapped before any of their containing col-
lection types, in the types mapping.

• Auxiliary Correspondence Model: New identity attributes are added to source and target
entities, to ensure bx and traceability properties, for the type, expression and activity map-
pings.

• Auxiliary Metamodel: A new auxiliary association, allMembers, is added to store the inher-
ited and direct members of a C struct.

• Object Indexing: Previously-created target model elements are looked up by their ids, to fa-
cilitate use of the Phased Construction, Entity Merging and Transformation Chain patterns.

• Entity Splitting: UML expressions and other elements are sometimes mapped to several
linked C elements. To ensure traceability and bx properties, the ids of the different target
C elements are each derived by 1-1 mappings from the source element id.

• Entity Merging: The representation of UML entity operations as C operations is achieved
by merging information from the class model (iteration 2) and the activities (iteration 5),
using an introduced primary key for COperation.

• Recursive Descent: The mapping of expressions and activities are naturally expressed using
this pattern, because of their self-recursive structures.

• Rule Inheritance: In some cases (such as the definition of mapExpression, mapStatement,
clength, etc), a generalised mapping rule is expressed in a superclass definition, and special-
isations defined in certain subclasses.

• Transformation Chain: The implementation is organised as the sequential composition of
uml2Ca and uml2Cb. This allows each to operate on only subsets of the complete UML and
C metamodels.
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• Implicit Copy: The executable implementations of UML-RSDS transformations automati-
cally copy any unmodified input data to the output model, so that there is no need to write
copying rules for entities unaffected by the transformation. Uml2Ca copies UML expression
and activity data unchanged, for example.

• Factor Code Generation into Model-to-model and Model-to-code: The UML model is mapped
to a C language model and then code text is printed from this.

• Text Templates: The printing of code uses fixed text templates with variable elements spec-
ified by C model data.

• Factor out Duplicated Expression Evaluations: Helper operations are introduced, such as
createCBinOpCall, to factor out repeated processing. Let variables are also used in certain
operations (eg., getPKOp).

The patterns are mainly rule modularisation or optimisation patterns. Transformation Chain and
Factor Code Generation are architectural patterns. The invertible form of Recursive Descent used
here is a novel MT design pattern discovered because of this case study.

We found that all of these patterns had positive contributions in the development, as shown
in Table 29.

Pattern Benefits
Phased Constr. Helps achieve NF3
Aux. Corr. Model Helps achieve F3, F4, F5
Aux. Metamodel Helps achieve NF3
Object Indexing Helps achieve NF2
Entity Splitting Helps achieve NF3, F4
Entity Merging Helps achieve NF3
Recursive Descent Helps achieve F5, NF3
Rule Inheritance Helps achieve NF3, simplicity
Transformation Chain Helps achieve NF3, potentially NF4
Implicit Copy Simplicity, NF2
Factor Code Gen. Helps achieve F2, F3, NF3, potentially NF4
Text Templates Helps achieve simplicity, F2, NF3, potentially NF4
Factor out Dup. Expressions Helps NF2, NF3, simplicity

Table 29: Pattern Benefits

However there were some disadvantages: in particular the use of Transformation Chain required
additional effort to ensure that all information needed by uml2Cb was correctly produced by
uml2Ca. The detection and correction of errors in uml2Cb caused by incorrect UML model data
was more difficult because this data was accessed via uml2Ca. The organisation and division of
metamodels between these transformations also required effort, and deployment was made more
complex. However, we consider that overall the benefits of modularity and cohesion gained by
this architecture outweigh the costs.

8 Related work

Systematic software engineering of model transformations is only practised in a minority of MT
developments, according to surveys of MT development [2, 11]. The emphasis in MT developments
has been on implementation, with less attention paid to requirements engineering or the overall
software quality of the transformation. One example of a detailed development process is the
migration case study of [24], which describes the techniques used in this industrial project. Details
of the development process for an industrial transformation project are also provided in [18]. In this
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paper we have given a detailed description of the development process and engineering techniques
used, together with evaluations of their effectiveness.

Code generation from UML to ANSI C is also an unusual topic, with only one recent publication
describing such a translator [5]. This code generator is described in a high-level manner, and it
is not clear how OCL expressions or UML activities are mapped to C using the transformation.
In contrast, we have provided explicit mappings for all elements of a substantial subset of UML,
including a large subset of OCL. Formal specification approaches for MT are described in [27] and
[4]. These do not appear to have been applied to large scale transformations.

Agile MDD has been applied in the areas of Web application development, finance, vehicle
control systems and telecom systems [1]. In general, benefits have been obtained from this com-
bination, particularly in improving development agility compared to a pure MDD approach. An
obstacle to the use of MDD with agile is the cost of model management and the maintenance of
consistency between linked models. We have addressed this problem by using a single specifica-
tion model which combines a class diagram, OCL and use cases. We found that this reduced the
amount of work needed to change a model in response to changing requirements/refactoring or
error corrections.

9 Future work

The code generator specification can be used as the basis of alternative C translators. In particular,
there is interest in mapping to the high-integrity MISRA C subset [17]. For this subset, dynamic
memory allocation is not permitted, so for each class, a maximum bound must be provided for
the number of objects of the class. Classes can again be represented by C structs, but e instances
would be an array of structures, instead of an array of pointers to structures. Objects would
be represented as ints indexing into these arrays, and collections represented as fixed-size arrays.
Our code generator already satisfies most of the code structuring restrictions of MISRA C, and
union data structures and other cases of overlapping memory usage are already excluded. Bitfields
are not used, nor are static elements. Recursive functions are not permitted by MISRA C (rule
16.2), so an alternative means of sorting (not treesort or qsort) must be used. Declarations of all
operations must be provided in separate header files (rule 8.1). The following rules of MISRA-C
are satisfied by our code generator: 1.1; 1.2; 1.3; 2.1; 2.2; 2.3; 2.4; 3.5; 4.1; 4.2; 5.1*; 5.2*; 5.3;
5.4; 5.5; 6.1; 6.4; 6.5; 7.1; 8.2; 8.3; 8.4; 8.6; 8.7; 8.8; 8.9; 9.1; 9.2; 9.3; 10.3; 10.4; 10.5; 11.2; 11.3;
11.5; 12.1*; 12.2*; 12.3; 12.4*; 12.5*; 12.6; 12.7; 12.8; 12.9; 12.12; 12.13; 13.1; 13.2; 13.3*; 13.4;
13.5; 13.6; 14.2; 14.3; 14.4; 14.5; 14.6*; 14.7*; 14.8; 14.9; 15.0; 15.1; 15.2; 15.3; 15.4; 15.5; 16.1;
16.3; 16.4; 16.6; 16.8; 17.1; 17.2; 17.3; 17.5; 17.6; 18.1; 18.2; 18.4; 19.1; 19.2; 19.3; 19.4; 19.5; 19.6;
19.7; 19.8; 19.9; 19.10; 19.11; 19.12; 19.13; 19.14; 19.16; 19.17; 20.1; 20.2; 20.5; 20.6; 20.7; 20.8;
20.11; 20.12. The rules marked with an asterisk are only satisfied if corresponding restrictions are
observed in the UML model.

The transformation can also serve as a basis for generators into other languages, currently a
VB.net code generator is being developed from UML2C. It can also be used as a template for re-
engineering the UML to Java code generators as UML-RSDS specifications. The transformation
is an example of a UML-RSDS plugin, that is, an additional tool which can process UML-RSDS
model data in text form to produce specialised code or documentation. Developers may add
such plugins f.jar by placing them in a /f subdirectory of the UML-RSDS tool directory. More
generally, UML-RSDS can be used to define domain-specific languages (DSLs) and supporting
tools in a similar manner: the abstract syntax of a DSL is specified as a UML class diagram
(such as Figure 10 as an abstract syntax for activities or pseudocode statements), the concrete
text syntax is given by text lines of the three forms object : Entity , object .feature = value and
object1 : object2.feature as described in Section 2. This is also the serialisation syntax of the DSL.
Plugins can then operate on files of such text to perform analysis, to generate other representations
of DSL models (such as graphical syntax, or semantic representations) and to generate executable
code or configuration files, etc. Using UML-RSDS, such plugins can be themselves written as
transformations that use the DSL metamodel as their source language.
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UML2C is an example of a multiple-staged code-generation strategy, which maps UML to
code in a series of steps, with successive refinement of UML elements to program elements. This
approach facilitates optimisation of generated code, and facilitates reuse of code generators (only
one stage may need to be changed to generate in a new/variant language). The steps of staged
code generation are (Figure 12):

1. UML specification model to UML design model: operation and use case postconditions (OCL)
are refined to explicit activities. Auxiliary operations are introduced for object creation,
deletion and for association management. It is possible also to introduce auxiliary data and
operations to implement iterators and caching.

2. UML design model to generic or language-specific 3GL model: UML types are mapped to
3GL types, operations to 3GL operations, activities to statements, etc.

3. 3GL model to code: text is printed from the 3GL model.

Figure 12: Staged code generation process

This provides flexibility, since the stage 1 translator does not need to change if a generator
for a new target programming language is needed. A new version of stage 2 is only needed in the
case of a significantly different programming language family. A new stage 3 mapping is needed
for each new programming language/variant within a family. For example, the language family of
statically-typed pure OO languages including all versions of Java and C# can be represented by
a single program metamodel. Only textual differences arise between these languages (eg., what
keywords and type names are used), and hence only different stage 3 mappings are needed.

Hybrid OO languages such as C++ have significantly different program structures and language
rules, and hence a separate language model is needed, together with stage 2 and stage 3 mappings
for this.

Procedural languages such as C and VB again require a distinct language model, as will
dynamically-typed languages (such as Python, Ruby, etc) and specialised languages (Matlab, R).

There is a tradeoff between the degree of generality of the code generation process and the
efficiency of the resulting code. Placing more code generation processing in stage 1 reduces the
processing needed in later stages – but this would result in inefficient general solutions for some
UML/OCL elements (eg., implementing a merge-sort algorithm in the UML design model, for
sortedBy). Likewise many OCL library operators (union, intersection, etc) could be defined in
general terms in the UML design, but it is more efficient to define language-specific libraries for
OCL, based on program libraries (eg., Java Collections). Object creation/deletion may also need
language-specific code (eg., malloc, free in C).
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10 Conclusions

We have shown that a systematic MDD process including requirements engineering and agile
practices can be beneficial for practical MT development. In addition, we have shown that it is
feasible to use a declarative and semantically simple specification approach (using OCL without
null or undefined values) to define a substantial system.

This case study is the largest transformation which has been developed using UML-RSDS, in
terms of the number of rules (of the order of 250 rules/operations in 5 subtransformations). By
using a systematic requirements engineering and agile development process, we were able to effec-
tively modularise the transformation and to organise its structure and manage its requirements.
Despite the complexity of the transformation, it was possible to use patterns to enforce bx and
other properties, and to effectively prove these properties. The translator has been incorporated
into the UML-RSDS tools version 1.7.
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A Semantic mapping from C

In order to establish semantic preservation of the UML source specification in the generated C code, we
use the UML-RSDS semantics of [15] (based upon the standard OCL mathematical semantics [20]) for
UML, and assign a corresponding semantics to C as follows (Table 30).

C element e Semantic denotation e’

int Range INT MIN ..INT MAX for particular implementation,
denoted INT

long LONG MIN ..LONG MAX , denoted LONG
double IEEE 754 double-precision floating point
struct E* Domain OBJ of object identifiers
void* OBJ
char* seq(INT)
struct E** seq(OBJ)
e instances Set es of existing E instances,

es ⊆ OBJ
Member T f; of struct E Map f E : es → T ′

Table 30: Semantic denotation of C programs

The denotation of members f of E can be abstracted to mathematical functions f E because each ex
in e instances has a value which is the memory location l of (the start of) a struct E data group. ex→f
is the contents of a location l + ft offset from l by a fixed number of memory locations calculated from
the declaration of E . Thus, given a valid instance ex of E , a value of T ′ can be obtained.

Note that null can never be an existing object of any class (it cannot be a member of the set es),
however it is considered to belong to the type OBJ corresponding to the class, as in [20].

We assume that malloc and calloc always succeed and allocate areas of memory which are not already
used. Semantically, these operations add elements to certain es sets, and OBJ must be of sufficient size
that this is always possible.

To prove semantic preservation, we need to show that SemUML(e) = SemC (c(e)) for each OCL ex-
pression e in a specification, where SemUML is the semantic denotation of OCL given in [15], c(e) is the
translation of e by UML2C, and SemC is the semantic representation of C expressions. We assume that
e is well-defined, ie., that Def (e) and Det(e) hold [15]. We can consider expressions case by case, only
selected examples will be given here. c(e) is CExpression[e.expId ] for e : Expression.

For numeric expressions, the main issues are datatype sizes and agreement of the specified and im-
plemented numeric operators. Both int and INT should be the domain of 32-bit signed integers, and
both long and LONG should be 64-bit signed integers. In special cases alternative datatypes could be
used, but then the specifier must adopt the same types as used in the specific implementation, and adapt
definitions of definedness appropriately. The operators +, *, - at specification and implementation levels
agree using the conventional definitions, provided the result is in the appropriate numeric domain. The
operator / on integers should use the ‘round towards zero’ convention, ie., -5/3 is -1, not -2. Likewise, %

46



should have the same sign as its first argument. Real numbers should be interpreted by IEEE standard
754 double-precision floating point numbers at specification and implementation levels.

For string values, SemC (str) is the sequence of characters up to but not including the first 0 value.
Thus for literal strings, SemUML(str) = SemC (c(str)) since the mapping to C inserts a 0 character at the
end of the OCL string, which cannot itself contain 0. We need also to show that for each unary operator
op on strings, that

SemUML(str) = SemC (c(str)) ⇒ SemUML(str→op()) = SemC (c(str→op()))

and likewise for binary and ternary operators.
The extent E .allInstances of a class E is represented in C by the union of f instances where F is a leaf

subclass of E (or F is E). Only leaf classes can be concrete in UML-RSDS. Therefore if B is a subclass
of A, B .allInstances is a subset of A.allInstances.

If arr is of type struct E**, then SemC (arr) is the representation of this as a mathematical set or
sequence, and is the collection of elements up to and not including the first NULL element. Likewise for
char* arrays. Thus, if e is Set{}, c(e) is an array arr with arr [0] = NULL, and SemC (arr) = {}, which
is the same as SemUML(e).

The appendE(col,x) operation in C operates to add x to the end of the collection col, and returns this
collection:

SemC (append(col , x )) = SemC (col)a [SemC (x )]

Thus by structural induction we can infer that

SemC (c(Sequence{x1, ..., xn})) = SemUML(Sequence{x1, ..., xn})

for any finite sequence of elements. Likewise for insert and other implementations of OCL collection
operators. The ocl.h library provides implementations of OCL operators that agree with this semantic
interpretation. Note that for subString , indexOfString , indexOf , insertAtString and at , the OCL num-
bering convention (indexes start at 1) is used, not the C convention. For any unary collection operator
op we need to show that:

SemUML(col) = SemC (c(col)) ⇒ SemUML(col→op()) = SemC (c(col→op()))

and likewise for binary collection operators.
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